From Aspartate to Ethylene: Central Role of N, C, and S Shuttles by Aminotransferases During Biosynthesis of a Major Plant Growth Hormone

  • E. Le DeunffEmail author
Part of the Progress in Botany book series (BOTANY, volume 80)


Ethylene biosynthesis originates from three amino acids: aspartate, cysteine, and methionine. In the aspartate-derived amino acid pathway, the ethylene pathway requires no less than seven aminotransferases that connect the metabolisms of nitrogen (N), sulfur (S), and carbon (C). Aminotransferases are fundamental enzymes in plants involved in N, S, and C shuttling through their implication in amino acid biosynthesis and catabolism. The role of these enzymes in the biosynthesis of hormones such as ethylene and auxins (IAA and PAA) is frequently overlooked. The functioning of aminotransferases is dependent on an essential cofactor: pyridoxal-5′-phosphate (PLP). This phosphorylated form of vitamin B6 is synthesized from glutamine, the first product of N assimilation produced by the GS/GOGAT cycle after reduction of nitrate and the glyceraldehyde 3-phosphate (G3P) and ribose 5-phosphate (5RP) provided by the glycolytic and pentose phosphate pathways, respectively. Here we review the recent progress in characterization of the aspartate-derived metabolic pathway with a particular focus on methionine biosynthesis and its salvage pathway (Yang cycle) related to ethylene and polyamine biosynthesis. Emphasis is placed on the key role of aminotransferases in regulating these pathways and their relation with aromatic amino acid biosynthesis and catabolism. Indeed, the promiscuity of certain aminotransferases extends their catalytic function and gives them a key role in the metabolism of ethylene, IAA, and aromatic amino acids. In this respect, recent studies have identified specific aminotransferases as being the main targets involved in the root morphogenetic program in response to environmental cues, nutrient availability, and energy status. Thus, genetically engineered plants for some aminotransferases, such as ACC synthase and tryptophan aminotransferase, demonstrate a great potential to produce crop species with enhanced exploratory root growth and a better nitrogen use efficiency. How the network of aminotransferases is involved in nitrogen-sensing systems such as plant glutamate receptors, TOR, and GCN2 kinases is now becoming a fundamental issue. The use of specific and nonspecific inhibitors of the catalytic activity of certain aminotransferases should help future pharmacological and genetic approaches to unravel their role in N, S, and C sensory systems.


  1. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, New YorkGoogle Scholar
  2. Adams DO, Yang SF (1977) Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol 60:892–896PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876PubMedCrossRefGoogle Scholar
  4. Amrhein N, Schneebeck D, Skorupka H, Tophof S, Stöckigt J (1981) Identification of a major metabolite of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid in higher plants. Naturwissenschaften 68(12):619–620CrossRefGoogle Scholar
  5. Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 262:92–105CrossRefGoogle Scholar
  6. Ayala-Rodriguez JA, Barrera-Ortiz S, Ruiz-Herrera LF, Lopez-Bucio J (2017) Folic acid orchestrates root development linking cell elongation with auxin response and acts independently of the Target of rapamycin signaling in Arabidopsis thaliana. Plant Sci 264:168–178PubMedCrossRefGoogle Scholar
  7. Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162PubMedCrossRefGoogle Scholar
  8. Baluska F, Yokawa K, Mancuso S, Baverstock K (2016) Understanding of anesthesia- why consciousness is essential for life and not based on genes. Commun Integr Biol 9(6):1–12. e1238118CrossRefGoogle Scholar
  9. Baur AH, Yang SF (1972) Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochemistry 11:3207–3214CrossRefGoogle Scholar
  10. Berger B, English S, Chan G, Knodel MH (2003) Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J Bacteriol 185:2418–2431PubMedPubMedCentralCrossRefGoogle Scholar
  11. Berkowitz DB, Charrette BD, Karukurichi KR, McFadden JM (2006) α-Vinylic amino acids: occurrence, asymmetric synthesis, and biochemical mechanisms. Tetrahedron Asymmetry 17:869–882PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bi YM, Wang RL, Zhu T, Rothstein SJ (2007) Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 8:281PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blackwell HE, Zhao Y (2003) Chemical genetic approaches to plant biology. Plant Physiol 133:448–455PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18PubMedCrossRefGoogle Scholar
  15. Boerjan W, Bauw G, Van Montagu M, Inze D (1994) Distinct phenotypes generated by overexpression and suppression of S-adenosyl-L-methionine synthetase reveal developmental patterns of gene silencing in tobacco. Plant Cell 6:1401–1414PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280:38803–38813PubMedCrossRefGoogle Scholar
  17. Bouzayen M, Felix G, Latché A, Pech J-C, Boller T (1991) Iron: an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Planta 184:244–247PubMedCrossRefGoogle Scholar
  18. Boycheva S, Dominguez A, Rolcik J, Boller T, Fitzpatrick TB (2015) Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis. Plant Physiol 167:102–117PubMedCrossRefGoogle Scholar
  19. Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brunke S, Seider K, Richter ME, Bremer-Streck S, Ramachandra S, Kiehntopf M, Brock M, Hube B (2014) Histidinedegradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot Cell 13(6):758–765PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49:238–249PubMedCrossRefGoogle Scholar
  22. Bussell JD, Keech O, Fenske R, Smith SM (2013) Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis. Plant J 75:578–591PubMedCrossRefGoogle Scholar
  23. Capitani G, Hohenester E, Feng L, Storici P, Kirsch JF, Jansonius JN (1999) Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol 294:745–756PubMedCrossRefGoogle Scholar
  24. Capitani G, McCarthy DL, Gut H, Grutter MG, Kirsch JF (2002) Apple 1-aminocyclopropane-1-carboxylate synthase in complex with the inhibitor L-aminoethoxyvinylglycine. Evidence for a ketimine intermediate. J Biol Chem 277:49735–49742PubMedCrossRefGoogle Scholar
  25. Capitani G, Tschopp M, Eliot AC, Kirsch JF, Grutter MG (2005) Structure of ACC synthase inactivated by the mechanism-based inhibitor L-vinylglycine. FEBS Lett 579:2458–2462PubMedCrossRefGoogle Scholar
  26. Cascales-Miñana B, Muños-Berthomeu J, Flores-Tomero M, Anoman AD, Pertusa J, Alaiz M, Osorio S, Fernie AR, Segura J, Ros R (2013) The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis. Plant Cell 25:2084–2101PubMedPubMedCentralCrossRefGoogle Scholar
  27. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattleger E (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843:1948–1968PubMedCrossRefGoogle Scholar
  28. Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296PubMedCrossRefGoogle Scholar
  29. Chen H, Xiong L (2009a) Localized auxin biosynthesis and postembryonic root development in Arabidopsis. Plant Signal Behav 4:752–754PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen H, Xiong L (2009b) The short-rooted vitamin B6-deficient mutant pdx1 has impaired local auxin biosynthesis. Planta 229:1303–1310PubMedCrossRefGoogle Scholar
  31. Chen Y, Zou T, McCormick S (2016) S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol 172:244–253PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chiba Y, Ishikawa M, Kijima F, Tyson RH, Kim J, Yamamoto A, Nambara E, Leustek T, Wallsgrove RM, Naito S (1999) Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in Arabidopsis. Science 286(5443):1371–1374PubMedCrossRefGoogle Scholar
  33. Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor–like gene family in Arabidopsis thaliana. Mol Biol Evol 19:1066–1082PubMedCrossRefGoogle Scholar
  34. Cho MH, Corea OR, Yang H, Bedgar DL, Laskar DD, Anterola AM, Moog-Anterola FA, Hood RL, Kohalmi SE, Bernards MA, Kang C, Davin LB, Lewis NG (2007) Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases. J Biol Chem 282:30827–30835PubMedCrossRefGoogle Scholar
  35. Christen P, Mehta PK (2001) From cofactor to enzymes. The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Chem Rec 1:436–447PubMedCrossRefGoogle Scholar
  36. Clandinin MT, Cossins EA (1974) Methionine biosynthesis in isolated Pisum sativum mitochondria. Phytochemistry 13:585–591CrossRefGoogle Scholar
  37. Clausen T, Huber R, Messerschmidt A, Pohlenz HD, Laber B (1997) Slow-binding inhibition of Escherichia coli cystathionine β-lyase by L-aminoethoxyvinylglycine: a kinetic and X-ray study. Biochemist 36:12633–12643CrossRefGoogle Scholar
  38. Colinas M, Esenhut M, Tohge T, Pesquera M, Fernie AR, Weber APM, Fiztpatrick TB (2016) Balancing of B6 vitaminers is essential for plant development and metabolism in Arabidopsis. Plant Cell 28:439–453PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cornell NW, Zuurendonk PF, Kerich MJ, Straight CB (1984) Selective inhibition of alanine aminotransferase and aspartate aminotransferase in rat hepatocytes. Biochem J 220:707–716PubMedPubMedCentralCrossRefGoogle Scholar
  40. Coruzzi GM (2003) Primary N-assimilation into amino acids in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–17Google Scholar
  41. Coruzzi GM, Last RL (2000) Amino acids. In: Buchanan RB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 358–410Google Scholar
  42. Cossins EA (1987) In: Davies DD (ed) The biochemistry of plants, vol 11. Academic, San Diego, pp 317–353Google Scholar
  43. Cossins EA (2000) The fascinating world of folate and one-carbon metabolism. Can J Bot 78:691Google Scholar
  44. Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38PubMedPubMedCentralCrossRefGoogle Scholar
  45. Curien G, Dumas R, Ravanel S, Douce R (1996) Characterization of an Arabidopsis thaliana cDNA encoding an S-adenosylmethionine-sensitive threonine synthase. FEBS Lett 390:85–90PubMedCrossRefGoogle Scholar
  46. Curien G, Job D, Douce R, Dumas R (1998) Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemist 31:13212–13221CrossRefGoogle Scholar
  47. Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557PubMedPubMedCentralCrossRefGoogle Scholar
  48. De Gernier H, De Pessemier J, Xu J, Cristescu SM, Van Der Straeten D, Verbruggen N, Hermans C (2016) A comparative study of ethylene emanation upon nitrogen deficiency in natural accessions of Arabidopsis thaliana. Front Plant Sci 10(7):70Google Scholar
  49. de la Torre F, De Santis L, Suárez M-F, Crespillo R, Cánovas FM (2006) Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. Plant J 46:414–425PubMedCrossRefGoogle Scholar
  50. de la Torre F, El-Azaz J, Ávila C, Cánovas FM (2014a) Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism. Plant Physiol 164(1):92–104PubMedCrossRefGoogle Scholar
  51. de la Torre F, Cañas RA, Pascual MB, Avila C, Cánovas FM (2014b) Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants. J Exp Bot 65(19):5527–5534PubMedCrossRefGoogle Scholar
  52. Deslauriers SD, Larsen PB (2010) FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3:626–640PubMedCrossRefGoogle Scholar
  53. Droux M, Ravanel S, Douce R (1995) Methionine biosynthesis in higher plants. II. Purification and characterization of cystathionine β-lyase from spinach chloroplasts. Arch Biochem Biophys 316:585–595PubMedCrossRefGoogle Scholar
  54. Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants–structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255(1):235–245PubMedCrossRefGoogle Scholar
  55. Duan Q, Kita D, Li C, Cheung AY, Wu HM (2010) FERONIA receptorlikekinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A 107:17821–17826PubMedPubMedCentralCrossRefGoogle Scholar
  56. Eichel J, González JC, Hotze M, Matthews RG, Schröder J (1995) Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus Roseus). Eur J Biochem 230:1053–1058PubMedCrossRefGoogle Scholar
  57. El-Azaz J, de la Torre F, Àvila C, Cánovas F (2016) Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity. Plant J 87:215–229PubMedCrossRefGoogle Scholar
  58. Finlayson SA, Lee I-J, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1090PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fisher SK, Davies WE (1976) The effect of the convulsant allylglycine (2-amino-4-pentenoic acid) on the activity of glutamic acid decarboxylase and the concentration of GABA in different regions of guinea pig brain. Biochem Pharmacol 25(16):1881–1885PubMedCrossRefGoogle Scholar
  60. Fitzpatrick TB (2011) Vitamin B6 in plants: more than meets the eye. In: Rebeille F, Douce R (eds) Advances in botanical research, vol 59. Elsevier, New York, pp 2–31Google Scholar
  61. Galili G (2011) The aspartate-family pathway of plants: linking production of essential amino acids with energy and stress regulation. Plant Signal Behav 6:192–195PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ge C, Cui X, Wang Y, Hu Y, Fu Z, Zhang D, Cheng Z, Li J (2006) BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res 16:446–456PubMedCrossRefGoogle Scholar
  63. Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SMD, Henry CS, de Crécy-Lagard V, Hanson AD (2012) Plant B vitamin pathways and their comparmentation: a guide for the perplexed. J Exp Bot 63(15):5379–5395PubMedCrossRefGoogle Scholar
  64. Gerelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D (2017) Folates in plants: research advances and progress in crop biofortification. Frontiers in. Plant Sci 5:21. eCollection 2017CrossRefGoogle Scholar
  65. Gil-Amado JA, Gomez-Jimenez MC (2012) Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission. Planta 235:1221–1237PubMedCrossRefGoogle Scholar
  66. Giovanelli J, Owens LD, Mudd SH (1971) Mechanism of inhibition of spinach beta-cystathionase by rhizobitoxine. Biochim Biophys Acta 227(3):671–684PubMedCrossRefGoogle Scholar
  67. Giovanelli J, Mudd SH, Datko AH (1985) Quantitative analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol 78:555–560PubMedPubMedCentralCrossRefGoogle Scholar
  68. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605PubMedCrossRefGoogle Scholar
  69. Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar Jb LZ, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262CrossRefGoogle Scholar
  70. Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D (2017) Folates in plants: research advances and progress in crop biofortification. Front Chem 5(2):21PubMedPubMedCentralGoogle Scholar
  71. Graindorge M, Giustini C, Jacomin AC, Kraut A, Curien G, Matringe M (2010) Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: the last homeless enzyme of aromatic amino acids biosynthesis. FEBS Lett 584:4357–4360PubMedCrossRefGoogle Scholar
  72. Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 106:7648–7653PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606–614PubMedCrossRefGoogle Scholar
  74. Hanson AD, Roje S (2001) One-carbon metabolismin higher plants. Annu Rev Plant Biol 52:119–137CrossRefGoogle Scholar
  75. Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343(6169):408–411PubMedPubMedCentralCrossRefGoogle Scholar
  76. Harpaz-Saad S, Yoon GM, Mattoo AK, Kieber JJ (2012) The formation of ACC and competition between polyamines and ethylene for SAM. In: The plant hormone ethylene, Annual plant reviews, vol 44. Wiley, Chichester, p 56Google Scholar
  77. He W, Brumos J, Li H et al (2011) A small-molecule screen identifies L-Kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hesse H, Kreft O, Maimann S, Zeh M, Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55:1799–1808PubMedCrossRefGoogle Scholar
  79. Hey SJ, Byrne E, Halford NG (2010) The interface between metabolic and stress signalling. Ann Bot 105:197–203PubMedCrossRefGoogle Scholar
  80. Hildebrandt TM, Nunes-Nesi A, Araújo WL, Braun H-P (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579PubMedCrossRefGoogle Scholar
  81. Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407−450CrossRefGoogle Scholar
  82. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role forgenetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387PubMedCrossRefGoogle Scholar
  83. Hu Y, Vandenbussche F, Van Der Straeten D (2017) Regulation od seedling growth by ethylene and the ethylene-auxin crosstalk. Planta 245:467–489PubMedCrossRefGoogle Scholar
  84. Huai Q, Xia Y, Chen Y, Callahan B, Li N, Ke H (2001) Crystal structures of 1 amino-cyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5-phosphate provide new insight into catalytic mechanisms. J Biol Chem 276:38210–38216PubMedCrossRefGoogle Scholar
  85. Hummel I, Couée I, El Amrani A, Martin-Tanguy J, Hennion F (2002) Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J Exp Bot 53:1463–1473PubMedCrossRefGoogle Scholar
  86. Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabat S, Komeda Y, Takahashi T (2004) Spermidine synthase genes are essential for survival Arabidopsis. Plant Physiol 135:1565–1573PubMedPubMedCentralCrossRefGoogle Scholar
  87. Inanobe A, Furukawa H, Gouaux E (2005) Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47:71–84PubMedCrossRefGoogle Scholar
  88. Iraqui I, Vissers S, Cartiaux M, Urrestarazu A (1998) Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Gen Genet 257:238–248PubMedCrossRefGoogle Scholar
  89. Jander G, Joshi V (2009) Aspartate-derived amino acids biosynthesis in Arabidopsis thaliana. Arabidopsis Book 7:e0121. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Jencks DA, Mathews RG (1987) Allosteric inhibition of methylenetetrahydrofolate reductase by adenosylmethionine. Effects of adenosylmethionine and NADPH on the equilibrium between active and inactive forms of the enzyme and on the kinetics of approach to equilibrium. J Biol Chem 262:2485–2493PubMedGoogle Scholar
  91. Jin Y, Ye N, Zhu F, Li H, Wang J, Liwen J, Zhang J (2017) Calcium-dependent protein kinase CPK28 targets the methionine adenosyltransferases for degradation by the 26S proteasome and affects ethylene biosynthesis and lignin deposition in Arabidopsis. Plant J 90:304–318PubMedCrossRefGoogle Scholar
  92. Kumar A, Taylor MA, Mad Arif SA, Davies HV (1996) Patato plants expressing antisens and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisens plants display abnormal phenotypes. Plant J 9:147–158CrossRefGoogle Scholar
  93. Kushad MM, Richardson DG, Ferro AJ (1982) 5-Methylthioribose kinase activity in plants. Biochem Biophys Res Commun 108:167–173PubMedCrossRefGoogle Scholar
  94. Kushad MM, Richardson DG, Ferro AJ (1983) Intermediates in the recycling of 5-methylthioribose to methionine in fruits. Plant Physiol 73:257–261PubMedPubMedCentralCrossRefGoogle Scholar
  95. Laber B, Maurer W, Hanke C, Grafe S, Ehlert S, Messerschmidt A, Clausen T (1999) Characterization of recombinant Arabidopsis thaliana threonine synthase. Eur J Biochem 263:212–221PubMedCrossRefGoogle Scholar
  96. Lageix S, Lanet E, Pouch-Pélissier M-N, Espagnol M-C, Robaglia C, Deragon J-M, Pélissier T (2008) Arabidopsis eIF2A kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biol 8:134PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lam H-M, Chiao YA, Li M-W, Yung Y-K, Sang J (2006) Putative nitrogen sensing systems in plants. J Integr Plant Biol 43:873–888CrossRefGoogle Scholar
  98. Le Deunff E, Lecourt J (2016) Non-specificity of ethylene inhibitors: ‘double edged’ tools to find out new targets involved in the root morphogenetic programme. Plant Biol 18:353–361PubMedCrossRefGoogle Scholar
  99. Le Deunff E, Lecourt J, Malagoli P (2016) Fine-tuning of root elongation by ethylene: a tool to study dynamic structure-function relationships between root architecture and nitrate absorption. Ann Bot 118(4):607–620PubMedCentralCrossRefGoogle Scholar
  100. Le J, Vandenbussche F, Van Der Straeten D, Verbelen J-P (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up-and downregulated and uncoupled from differentiation. Plant Physiol 125:519–522PubMedPubMedCentralCrossRefGoogle Scholar
  101. Le Deunff E, Beauclair P, Leblanc A, Deleu C, Lecourt J (2018) Non-specificity of AVG inhibitor reveals the importance of aminotransferases network in the root morphogenetic program and nitrate absorption. Ann Bot (submitted MS/2018/)Google Scholar
  102. Le Ny F, Leblanc A, Beauclair P, Deleu C, Le Deunff E (2013) In low transpiring conditions, nitrate and water fluxes for growth of B. napus plantlets correlate with changes in BnNrt2.1 and BnNrt1.1 nitrate transporters expression. Plant Signal Behav 8:e22902PubMedPubMedCentralCrossRefGoogle Scholar
  103. Leblanc A, Renault H, Lecourt J, Etienne P, Deleu C, Le Deunff E (2008) Elongation changes of exploratory and root hair systems induced by AVG and ACC affect nitrate uptake and BnNrt2.1 and BnNrt1.1 gene expression in oil seed Rape. Plant Physiol 146:1028–1040CrossRefGoogle Scholar
  104. Lemaire L, Deleu C, Le Deunff E (2013) Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces. J Exp Bot 64:2725–2737PubMedCrossRefGoogle Scholar
  105. Li F, Wang J, Ma C, Zhao Y, Wang Y, Hasi A, Qi Z (2013) Glutamate receptor-like channel3.3 is involved in mediating glutathionetriggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiol 162:1497–1509PubMedPubMedCentralCrossRefGoogle Scholar
  106. Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, Xu L, Liu H, Xu T, Xiong Y (2017) Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci U S A 114(10):2765–2770PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lieberman M (1979) Biosynthesis and action of ethylene. Annu Rev Plant Physiol 30:533–591CrossRefGoogle Scholar
  108. Lin L-C, Hsu J-H, Wang L-C (2010) Identification of novel inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase by chemical screening in Arabidopsis thaliana. J Biol Chem 285:33445–33456PubMedPubMedCentralCrossRefGoogle Scholar
  109. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399PubMedPubMedCentralCrossRefGoogle Scholar
  110. Locke JM, Bryce JH, Morris PC (2000) Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.) J Exp Bot 51:1843–1849PubMedCrossRefGoogle Scholar
  111. Loewith R, Hall MN (2011) Target of Rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–1201PubMedPubMedCentralCrossRefGoogle Scholar
  112. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395PubMedCrossRefGoogle Scholar
  113. Ludwig-Müller J (2009) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773CrossRefGoogle Scholar
  114. Lyzenga WJ, Booth JK, Stone SL (2012) The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J 71:23–34PubMedCrossRefGoogle Scholar
  115. Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X, Tong Y (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78:70–79PubMedCrossRefGoogle Scholar
  116. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105PubMedCrossRefGoogle Scholar
  117. Maeda H, Yoo H, Dudareva N (2011) Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nature Chem Biol 7:19–21CrossRefGoogle Scholar
  118. Malone S, Chen Z-H, Bahram AR, Walker RP, Gray JE, Leegoog RC (2007) Phosphoenolpyruvate carboxykinase in Arabidopsis: changes in gene expression, rotein and activity during vegetative and reproductive development. Plant Cell Physio 48(3):441–450CrossRefGoogle Scholar
  119. Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L, Li D, Luan S (2015) FERONIA receptor kinase interacts with Sadenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ 38:2566–2574PubMedCrossRefGoogle Scholar
  120. Martin MN, Cohen JD, Saftner RA (1995) A new 1-aminocyclopropane- 1-carboxylic acid-conjugating activity in tomato fruit. Plant Physiol 109(3):917–926PubMedPubMedCentralCrossRefGoogle Scholar
  121. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suziki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:18512–18517PubMedPubMedCentralCrossRefGoogle Scholar
  123. McCarthy DL, Capitani G, Feng L, Gruetter MG, Kirsch JF (2001) Glutamate 47 in 1-aminocyclopropane-1-carboxylate synthase is a major specificity determinant. Biochemist 40:12276–12284CrossRefGoogle Scholar
  124. McDonnell L, Plett JM, Andersson-Gunnerãs S, Kozela C, Dugardeyn J, Van Der Straeten D, Glick BR, Sundberg B, Regan S (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Plant 136(1):94–109PubMedCrossRefGoogle Scholar
  125. Mehta PK, Hale TI, Christen P (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561PubMedCrossRefGoogle Scholar
  126. Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618PubMedCrossRefGoogle Scholar
  127. Miesak B, Coruzzi GM (2002) Molecular and physiological analysis of Arabidopsis mutants defective in cytosolic or chloroplastic aspartate aminotransferase. Plant Physiol 129:650–660PubMedPubMedCentralCrossRefGoogle Scholar
  128. Mills WR, Lea PJ, Miflin BJ (1980) Photosynthetic formation of the asparte family of amino acids in isolated chloroplasts. Plant Physiol 65:1166–1172PubMedPubMedCentralCrossRefGoogle Scholar
  129. Miyazaki JH, Yang SF (1987) Metabolism of 5-methylthioribose to methionine. Plant Physiol 84:277–281PubMedPubMedCentralCrossRefGoogle Scholar
  130. Mo X, Zhu Q, Li X et al (2006) The hpa1 mutant of Arabidopsis reveals a crucial role of histidinehomeostasis in root meristem maintenance. Plant Physiol 141:1425–1435PubMedPubMedCentralCrossRefGoogle Scholar
  131. Mony L, Kew JN, Gunthorpe MJ, Paoletti P (2009) Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol 157:1301–1317PubMedPubMedCentralCrossRefGoogle Scholar
  132. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336PubMedCrossRefGoogle Scholar
  133. Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci. 17:181–195PubMedCrossRefGoogle Scholar
  134. Muños-Berthomeu J, Cascales-Miñana B, Mulet JM, Bjora-Fernández P-RJ, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balancein Arabidopsis. Plant Physiol 151:541–558CrossRefGoogle Scholar
  135. Muños-Berthomeu J, Cascales-Miñana B, Alaiz M, Segura J, Ros R (2010) A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development. Plant Signal Behav 5(1):67–69CrossRefGoogle Scholar
  136. Nahum-Levy R, Fossom LH, Skolnick P, Benveniste M (1999) Putative partial agonist 1-aminocyclopropanecarboxylic acid acts concurrently as a glycine-site agonist and a glutamate-site antagonist at N-methyl-D-aspartate receptors. Mol Pharmacol 56:1207–1218PubMedCrossRefGoogle Scholar
  137. Narukawa-Nara M, Nakamura A, Kikuzato K, Kakei Y, Sato A, Mitani Y, Yamasaki-Kokudo Y, Ishii T, Hayashi K-I, Asami T, Ogura T, Yoshida S, Fujioka S, Kamakura T, Kawatsu T, Tachikawa M, Soeno K, Shimada Y (2016) Aminooxy-naphthylpropionic acid and its derivatives are inhibitors of auxin biosynthesis targeting L-tryptophan aminotransferase: structure–activity relationships. Plant J 87:245–257PubMedCrossRefGoogle Scholar
  138. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 13:4347–4368CrossRefGoogle Scholar
  139. Nero D, Krouk G, Tranchina D, Coruzzi GM (2009) A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive “biomodule”. BMC Syst Biol 3:59PubMedPubMedCentralCrossRefGoogle Scholar
  140. Niederberger P, Miozzari G, Hutter R (1981) Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1:584–593PubMedPubMedCentralCrossRefGoogle Scholar
  141. Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis Book 9:e0142. doi/10.1199/tab.0142Google Scholar
  142. O’Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547–574PubMedCrossRefGoogle Scholar
  143. Owens LD, Lieberman M, Kunishi AT (1971) Inhibition of ethylene production by rhizobitoxine. Plant Physiol 48:1–4PubMedPubMedCentralCrossRefGoogle Scholar
  144. Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25:291–299PubMedCrossRefGoogle Scholar
  145. Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, Van Montagu M, Inze D (1989a) Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding Sadenosylmethionine synthetase. Plant Cell 1:81–93PubMedPubMedCentralCrossRefGoogle Scholar
  146. Peleman J, Saito K, Cottyn B, Engler G, Seurinck J, Vanmontagu M, Inze D (1989b) Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene 84:359–369PubMedCrossRefGoogle Scholar
  147. Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47(1):77–80PubMedCrossRefGoogle Scholar
  148. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) Vanishing tassel 2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566PubMedPubMedCentralCrossRefGoogle Scholar
  149. Pieck M, Yuan Y, Godfrey J, Fisher C, Zolj S, Vaughan D, Thomas N, Wu C, Ramos J, Lee N, Normanly J, Celenza JL (2015) Auxin and tryptophan homeostasis are facilitated by the ISS1/VAS1 aromatic aminotransferase in Arabidopsis. Genetics 201:185–199PubMedPubMedCentralCrossRefGoogle Scholar
  150. Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauer N (2011) Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. Plant Cell 23:1904–1919PubMedPubMedCentralCrossRefGoogle Scholar
  151. Price MB, Jelesko J, Okumoto S (2012) Glutamate receptor homologs in plants: functions and evolutionary origins. Front Plant Sci 3:235PubMedPubMedCentralCrossRefGoogle Scholar
  152. Pruess DL, Scannell JP, Kellett M, Ax HA, Janecek J, Williams TH, Stempel A, Berger J (1974) Antimetabolites produced by microorganisms. X. L-2-Amino4-(2-aminoe- thoxy)-trans-3-butenoic acid. J Antibiot 27:229–233PubMedCrossRefGoogle Scholar
  153. Rando RR (1974a) Chemistry and enzymology of Kcat inhibitors. Science 185:320–324PubMedCrossRefGoogle Scholar
  154. Rando RR (1974b) Irreversible inhibition of aspartate aminotransferase by 2-amino-3-butenoic acid. Biochemist 13(19):3859–3863CrossRefGoogle Scholar
  155. Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805–7812PubMedPubMedCentralCrossRefGoogle Scholar
  156. Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rébeillé F (2001) Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98:15360–15365PubMedPubMedCentralCrossRefGoogle Scholar
  157. Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rébeillé F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279(21):22548–22557PubMedCrossRefGoogle Scholar
  158. Reyes-Hernández BJ, Srivastava AC, Ugartechea-Chirino Y, Shishkova S, Ramos-Parra PA, Lira-Ruan V, Díaz de la Garza RI, Dong G, Moon JC, Blancaflor EB, Dubrovsky JR (2014) The root indeterminacy-to-determinacy developmental switch is operated through a folate-dependent pathway in Arabidopsis thaliana. New Phytol 202:1223–1236PubMedCrossRefGoogle Scholar
  159. Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005) Isolation and characterization of a d-cysteine desulhydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304PubMedCrossRefGoogle Scholar
  160. Robert S, Raikhel NV, Hicks G (2009) Powerful partners: arabidopsis and chemical genomics. Arabidopsis Book 7:e0109PubMedPubMedCentralCrossRefGoogle Scholar
  161. Robinson D (2005) Integrated root responses to variations in nutrient supply. In: BassiriRad H (ed) Nutrient acquisition by plants: an ecological perspective. Springer, Berlin, Heidelberg, pp 43–61CrossRefGoogle Scholar
  162. Rodrigues-Pousada RA, De Rycke R, Dedonder A, Van Caeneghem W, Engler G, Van Montagu M, Van Der Straeten D (1993) The Arabidopsis 1-aminocyclopropane-1-carboxylatesynthase gene 1 is expressed during early development. Plant Cell 5:897–911PubMedPubMedCentralCrossRefGoogle Scholar
  163. Roje S, Chan SY, Kaplan F, Raymond RK, Horne DW, Appling DR et al (2002a) Metabolic engineering in yeast demonstrates that s-adenosylmethionine controls flux through the methylene tetrahydrofolate reductase reaction in vivo. J Biol Chem 277:4056–4061PubMedCrossRefGoogle Scholar
  164. Roje S, Janave MT, Ziemak MJ, Hanson AD (2002b) Cloning and characterization of mitochondrial 5-formyltetrahydrofolate cycloligase from higher plants. J Biol Chem 277:42748–42754PubMedCrossRefGoogle Scholar
  165. Romero LC, Aroca MA, Laureano-Marin AM, Moreno I, Garcia I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7(2):264–272PubMedCrossRefGoogle Scholar
  166. Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21:3567–3584PubMedPubMedCentralCrossRefGoogle Scholar
  167. Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212PubMedPubMedCentralCrossRefGoogle Scholar
  168. Rzewuski G, Cornell KA, Rooney L, Bürstenbinder K, Wirtz M, Hell R, Sauter M (2007) OsMTN encodes a 5′-methylthioadenosine nucleosidase that is up-regulated during submergence-induced ethylene synthesis in rice (Oryza sativa L.) J Exp Bot 58:1505–1514PubMedCrossRefGoogle Scholar
  169. Saftner R (1989) Effects of organic amines on α-aminoisobutyric acid uptake into the vacuole and on ethylene production by tomato pericarp slices. Physiol Plant 75(4):485–491CrossRefGoogle Scholar
  170. Saftner RA, Martin MN (1993) Transport of 1-aminocyclopropane-1-carboxylic acid into isolated maize mesophyll vacuoles. Physiol Plant 87(4):535–543CrossRefGoogle Scholar
  171. Sahm U, Knobloch G, Wagner F (1973) Isolation and characterization of the methionine antagonist L-2-amino-4-methoxy-trans-3-butenoic acid from Pseudomonas aeruginosa grown on n-paraffin. J Antibiot 26:389–390PubMedCrossRefGoogle Scholar
  172. Satoh S, Yang SF (1989a) Inactivation of 1-aminocyclopropane-1-carboxylate synthase by L-vinylglycine as related to the mechanism-based inactivation of the enzyme by S-adenosyl-l-methionine. Plant Physiol 91:1036–1039PubMedPubMedCentralCrossRefGoogle Scholar
  173. Satoh S, Yang SF (1989b) Specificity of S-adenosyl-L-methionine in the inactivation and the labeling of 1-aminocyclopropane-1-carboxylate synthase isolated from tomato fruits. Arch Biochem Biophys 271:107–112PubMedCrossRefGoogle Scholar
  174. Sauter M, Cornell KA, Beszteri S, Rzewuski G (2004) Functional analysis of methyl-thioribose kinase genes in plants. Plant Physiol 136:4061–4071PubMedPubMedCentralCrossRefGoogle Scholar
  175. Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G (2005) The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine. Plant J 44:718–772PubMedCrossRefGoogle Scholar
  176. Sauter M, Moffatt B, Saechao MC, Helll R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451:145–154PubMedCrossRefGoogle Scholar
  177. Scannell JP, Pruess DL, Demny TC, Sello LH, Williams T, Stempel A (1972) Anti-metabolites produced by microorganisms. V. L-2-Amino-4- methoxy-trans-3-butenoic acid. J Antibiot 25:122–127CrossRefGoogle Scholar
  178. Scheible W, Lauerer M, Schulze E, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691CrossRefGoogle Scholar
  179. Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499PubMedPubMedCentralCrossRefGoogle Scholar
  180. Sekowska A, Dénervaud V, Ashida H, Michoud K, Haas D, Yokota A, Danchin A (2004) Bacterial variations on the methionine salvage pathway. BMC Microbiol 4:9PubMedPubMedCentralCrossRefGoogle Scholar
  181. Shah S, Cossins E (1970) Pteroylglutamates and methionine biosynthesis in isolated chloroplasts. FEBS Lett 7:267–270PubMedCrossRefGoogle Scholar
  182. Shao A, Ma W, Zhao X, Hu M, He X, Teng W, Li H, Tong Y (2017) The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiol 174(4):2274–2288PubMedPubMedCentralCrossRefGoogle Scholar
  183. Sheen J (2014) Master regulators in plant Glucose signaling networks. J Plant Biol 57(2): 67–79Google Scholar
  184. Shin K, Lee S, Song W-Y, Lee R-A, Lee I, Ha K, Ko J-C, Park S-K, Nam H-G, Lee Y (2015) Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana. Plant Cell Physiol 56(3):572–582PubMedCrossRefGoogle Scholar
  185. Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732PubMedCrossRefGoogle Scholar
  186. Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51:524–536PubMedCrossRefGoogle Scholar
  187. Srivastava AC, Tang Y, de la Garza RI D, Blancaflor EB (2011) The plastidial folylpolyglutamate synthetase and root apical meristem maintenance. Plant Signal Behav 6:751–754PubMedPubMedCentralCrossRefGoogle Scholar
  188. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16(8):2117–2127PubMedPubMedCentralCrossRefGoogle Scholar
  189. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185PubMedPubMedCentralCrossRefGoogle Scholar
  190. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191PubMedCrossRefGoogle Scholar
  191. Stepanova AN, Yun J, Robles LM, Novak O, He W et al (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–3973PubMedPubMedCentralCrossRefGoogle Scholar
  192. Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheieble WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53(370):950–970CrossRefGoogle Scholar
  193. Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, Kinoshita-Tsujimura K, Yu H, Dai X, Takebayashi Y, Tajeda-Kamiya N, Kakimoto T, Kawaide H, Natsume M, Estelle M, Zhao Y, Hayashi K-I, Kamiya Y, Kasahara H (2015) Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol 56(8):1641–1654PubMedPubMedCentralCrossRefGoogle Scholar
  194. Swarup R, Perry P, Hagenbeek D, Van Der Straeten D, Beemster GT, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196PubMedPubMedCentralCrossRefGoogle Scholar
  195. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184PubMedCrossRefGoogle Scholar
  196. Tambasco-Studart M, Titiz O, Raschle T, Forster G, Amrhein N, Fitzpatrick TB (2005) Vitamin B6 biosynthesis in higher plants. Proc Natl Acad Sci U S A 102:13687–13692PubMedPubMedCentralCrossRefGoogle Scholar
  197. Tan ST, Xue HW (2014) Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. Cell Rep 9:1692–1702PubMedCrossRefGoogle Scholar
  198. Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J Mol Biol 383:36–48PubMedCrossRefGoogle Scholar
  199. Tapken D, Anschütz U, Liu L-H, Huelsken T, Seebohm G, Becker D, Hollmann M (2013) A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci Signal 6:ra47PubMedCrossRefGoogle Scholar
  200. Tarun AS, Theologis A (1998) Complementation analysis of mutants of 1-aminocyclopropane 1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. J Biol Chem 273:12509–12514PubMedCrossRefGoogle Scholar
  201. Tassoni A, van Buuren M, Franceschetti M, Fornalè S, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393CrossRefGoogle Scholar
  202. Tatsuki M, Mori H (2001) Phosphorylation of tomato 1-aminocyclopropane- 1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem 276:28051–28057PubMedCrossRefGoogle Scholar
  203. Tian QY, Sun P, Zhang WH (2009) Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol 184:918–931PubMedCrossRefGoogle Scholar
  204. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240(1):1–18PubMedCrossRefGoogle Scholar
  205. Titiz O, Tambasco-Studart M, Warzych E, Apel K, Amrhein N, Laloi C, Fitzpatrick TB (2006) PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J 48:933–946PubMedCrossRefGoogle Scholar
  206. Tophof S, Martinoia E, Kaiser G, hartung W, Amrhein N (1989) Compartmentation and transport of 1-aminocyclopropane-1-carboxylic acid and N-manlonyl-1-aminocyclopropane-carboxylic acid in barley and wheat mesophyll-cells and protoplasts. Physiol Plant 75:333–339CrossRefGoogle Scholar
  207. Tsuchisaka A, Theologis A (2004a) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci U S A 101:2275–2280PubMedPubMedCentralCrossRefGoogle Scholar
  208. Tsuchisaka A, Theologis A (2004b) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane- 1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000PubMedPubMedCentralCrossRefGoogle Scholar
  209. Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, Zhang X, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylenebiosynthesis in Arabidopsis thaliana. Genetics 183(3):979–1003PubMedPubMedCentralCrossRefGoogle Scholar
  210. Urrestarazu A, Vissers S, Iraqui I, Grenson M (1998) Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol Gen Genet 257:230–237PubMedCrossRefGoogle Scholar
  211. Van de Poel B, Bulens I, Markoula A, Hertog M, Dreesen R, Wirzt M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Prot MP, Sauter M, Nicolai BM, Geeraerd AH (2012) Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. Plant Physiol 160:1498–1514PubMedPubMedCentralCrossRefGoogle Scholar
  212. Van der Straeten D, odrigues-Pousada RA, Villarroel R, Hanley S, Goodman HM, Van Montagu M (1992) Cloning, genetic mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci U S A 89:9969–9973PubMedPubMedCentralCrossRefGoogle Scholar
  213. Van Zhong G, Jacqueline K, Burns JK (2003) Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol 53:117–131PubMedCrossRefGoogle Scholar
  214. Vincill ED, Bieck AM, Spalding EP (2012) Ca2+ conduction by an amino acid-gated ion channel related to glutamate receptors. Plant Physiol 159:40–46PubMedPubMedCentralCrossRefGoogle Scholar
  215. Vincill ED, Clarin AE, Molenda JN, Spalding EP (2013) Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis. Plant Cell 25:1304–1313PubMedPubMedCentralCrossRefGoogle Scholar
  216. Voesenek LA, Harren FJ, Bögemann GM, Blom CW, Reuss J (1990) Ethylene production and petiole growth in rumex plants induced by soil waterlogging the application of a continuous flow system and a laser driven intracavity photoacoustic detection system. Plant Physiol 94:1071–1077PubMedPubMedCentralCrossRefGoogle Scholar
  217. Wand NN, Shih M-C, Li N (2005) The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACC7 induced by hormones and stresses. J Exp Bot 56(413):909–920CrossRefGoogle Scholar
  218. Wang SY, Adams DO, Lieberman M (1982) Recycling of 5′-methylthioadenosineribose carbon atoms into methionine in tomato tissue in relation to ethylene production. Plant Physiol 70:117–121PubMedPubMedCentralCrossRefGoogle Scholar
  219. Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14 (suppl.):S131–S151CrossRefGoogle Scholar
  220. Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567PubMedPubMedCentralCrossRefGoogle Scholar
  221. Wang KL, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950PubMedCrossRefGoogle Scholar
  222. Wang J, Wang Y, Yang J, Ma C, Zhang Y, Ge T, Qi Z, Kang Y (2015) Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation. J Integr Plant Biol 57(8):708–721PubMedCrossRefGoogle Scholar
  223. Weiland M, Mancuso S, Baluska F (2016) Signalling via glutamate and GLRS in Arabidopsis thaliana. Funct Plant Biol 43:1–25CrossRefGoogle Scholar
  224. Won C, Shen X, Mashiguchi K, Zheng Z, Dai X et al (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferase of Arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A 108:18518–18523PubMedPubMedCentralCrossRefGoogle Scholar
  225. Xiong Y, Sheen J (2014) The role of Target of Rapamycin signaling networks in plant growth and metabolism. Plant Physiol 164:499–512PubMedPubMedCentralCrossRefGoogle Scholar
  226. Xiong Y, Sheen J (2015) Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol 28:83–91PubMedPubMedCentralCrossRefGoogle Scholar
  227. Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A (2003) Biochemical diversity among the 1-aminocyclopropane- 1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102–49112PubMedCrossRefGoogle Scholar
  228. Yan Z, Liu X, Ljung K, Li S, Zhao W, Yang F, Wang M, Tao Y (2017) Type B response regulators act as central integrators in transcriptional control of the auxin biosynthesis enzyme TAA1. Plant Physiol 175(3):1438–1454PubMedPubMedCentralCrossRefGoogle Scholar
  229. Yanagisawa S, Yoo S-D, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525PubMedCrossRefGoogle Scholar
  230. Yasuta T, Satoh S, Minamisawa K (1999) New assay for Rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Appl Environ Microbiol 65:849–852PubMedPubMedCentralGoogle Scholar
  231. Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010) Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 3:269–279PubMedCrossRefGoogle Scholar
  232. Yoo SD, Cho YH, Tena G, Xiog Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–795PubMedPubMedCentralCrossRefGoogle Scholar
  233. Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N (2013) An alternative pathway contributes to phenylalanine biosynthesis via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat Commun 4:2833PubMedCrossRefGoogle Scholar
  234. Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T, Kitano H, Yamaguchi I, Koshiba T, Hibara KI, Nagato Y (2014) The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J 78:927–936PubMedCrossRefGoogle Scholar
  235. Zeh M, Leggewie G, Hoefgen R, Hesse H (2002) Cloning and characterisation of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L). Plant Mol Biol 48:255–265PubMedCrossRefGoogle Scholar
  236. Zhang Y, Dickinson JR, Paul MJ, Halford NG (2003) Molecular cloning of an Arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta 217:668–675PubMedCrossRefGoogle Scholar
  237. Zhao Y (2014) Auxin biosynthesis. Arabidopsis Book 12:e0173PubMedPubMedCentralCrossRefGoogle Scholar
  238. Zheng XFS, Chan T-F (2002) Chemical genomics: a systematic approach in biological research and drug discovery. Curr Issues Mol Biol 4:33–43PubMedGoogle Scholar
  239. Zheng Z, Guo Y, Novak O, Dai X, Zhao Y, Ljung K, Noel JP, Chory J (2013a) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9(4):244–246PubMedPubMedCentralCrossRefGoogle Scholar
  240. Zheng D, Han X, An Y, Guo H, Xia X, Yin W (2013b) The nitrate transporter NRT2. 1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ 36:1328–1337PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Normandie Université, UNICAEN, ICORECaenFrance

Personalised recommendations