Approximation Algorithms for Multi-criteria Traveling Salesman Problems

  • Bodo Manthey
  • L. Shankar Ram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4368)


In multi-criteria optimization, several objective functions are to be optimized. Since the different objective functions are usually in conflict with each other, one cannot consider only one particular solution as optimal. Instead, the aim is to compute so-called Pareto curves. Since Pareto curves cannot be computed efficiently in general, we have to be content with approximations to them.

We are concerned with approximating Pareto curves of multi-criteria traveling salesman problems (TSP). We provide algorithms for computing approximate Pareto curves for the symmetric TSP with triangle inequality (Δ− STSP), symmetric and asymmetric TSP with strengthened triangle inequality (Δ(γ)−STSP and Δ(γ)− ATSP), and symmetric and asymmetric TSP with weights one and two (STSP(1,2) and ATSP(1,2)).

We design a deterministic polynomial-time algorithm that computes (1+γ+ ε)-approximate Pareto curves for multi-criteria Δ(γ)−STSP for \(\gamma \in [\frac 12, 1]\). We also present two randomized approximation algorithms for multi-criteria Δ(γ)−STSP achieving approximation ratios of \(\frac{2\gamma^3 + \gamma^2 + 2 \gamma-1}{2\gamma^2} + \varepsilon\) and \(\frac{1+\gamma}{1+3 \gamma -- 4 \gamma^2}\) + ε, respectively. Moreover, we design randomized approximation algorithms for multi-criteria Δ(γ)−ATSP (ratio \(\frac 12+ \frac{\gamma^3}{1-3\gamma^2}\) + ε for \(\gamma < 1/\sqrt{3}\)), STSP(1,2) (ratio 4/3) and ATSP(1,2) (ratio 3/2).

The algorithms for Δ(γ)−ATSP, STSP(1,2), and ATSP(1,2) as well as one algorithm for Δ(γ)−STSP are based on cycle covers. Therefore, we design randomized approximation schemes for multi-criteria cycle cover problems by showing that multi-criteria graph factor problems admit fully polynomial-time randomized approximation schemes.


Approximation Algorithm Approximation Ratio Travel Salesman Problem Travel Salesman Problem Hamiltonian Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angel, E., Bampis, E., Gourvés, L.: Approximating the Pareto curve with local search for the bicriteria TSP(1,2) problem. Theoretical Computer Science 310(1–3), 135–146 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angel, E., Bampis, E., Gourvès, L., Monnot, J.: (Non-)approximability for the multi-criteria TSP(1,2). In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 329–340. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  4. 4.
    Barahona, F., Pulleyblank, W.R.: Exact arborescences, matchings and cycles. Discrete Applied Mathematics 16(2), 91–99 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1,2)-TSP. In: Proc. of the 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 641–648. SIAM, Philadelphia (2006)CrossRefGoogle Scholar
  6. 6.
    Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Bläser, M., Manthey, B., Sgall, J.: An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality. Journal of Discrete Algorithms (to appear)Google Scholar
  8. 8.
    Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Information Processing Letters 75(3), 133–138 (2000)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Sunil Chandran, L., Shankar Ram, L.: Approximations for ATSP with parameterized triangle inequality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 227–237. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA (1976)Google Scholar
  11. 11.
    Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. International Transactions in Operational Research 7(1), 5–31 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  13. 13.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectrum 22(4), 425–460 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  15. 15.
    Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the ACM 52(4), 602–626 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons, Chichester (1985)zbMATHGoogle Scholar
  17. 17.
    Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Papadimitriou, C.H.: The complexity of restricted spanning tree problems. Journal of the ACM 29(2), 285–309 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proc. of the 41st Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 86–92. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  20. 20.
    Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing 6(3), 563–581 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canadian Journal of Mathematics 6, 347–352 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bodo Manthey
    • 1
  • L. Shankar Ram
    • 2
  1. 1.Department of Computer ScienceYale University 
  2. 2.Institut für Theoretische InformatikETH Zürich 

Personalised recommendations