# Approximation Algorithms for Multi-criteria Traveling Salesman Problems

• Bodo Manthey
• L. Shankar Ram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4368)

## Abstract

In multi-criteria optimization, several objective functions are to be optimized. Since the different objective functions are usually in conflict with each other, one cannot consider only one particular solution as optimal. Instead, the aim is to compute so-called Pareto curves. Since Pareto curves cannot be computed efficiently in general, we have to be content with approximations to them.

We are concerned with approximating Pareto curves of multi-criteria traveling salesman problems (TSP). We provide algorithms for computing approximate Pareto curves for the symmetric TSP with triangle inequality (Δ− STSP), symmetric and asymmetric TSP with strengthened triangle inequality (Δ(γ)−STSP and Δ(γ)− ATSP), and symmetric and asymmetric TSP with weights one and two (STSP(1,2) and ATSP(1,2)).

We design a deterministic polynomial-time algorithm that computes (1+γ+ ε)-approximate Pareto curves for multi-criteria Δ(γ)−STSP for $$\gamma \in [\frac 12, 1]$$. We also present two randomized approximation algorithms for multi-criteria Δ(γ)−STSP achieving approximation ratios of $$\frac{2\gamma^3 + \gamma^2 + 2 \gamma-1}{2\gamma^2} + \varepsilon$$ and $$\frac{1+\gamma}{1+3 \gamma -- 4 \gamma^2}$$ + ε, respectively. Moreover, we design randomized approximation algorithms for multi-criteria Δ(γ)−ATSP (ratio $$\frac 12+ \frac{\gamma^3}{1-3\gamma^2}$$ + ε for $$\gamma < 1/\sqrt{3}$$), STSP(1,2) (ratio 4/3) and ATSP(1,2) (ratio 3/2).

The algorithms for Δ(γ)−ATSP, STSP(1,2), and ATSP(1,2) as well as one algorithm for Δ(γ)−STSP are based on cycle covers. Therefore, we design randomized approximation schemes for multi-criteria cycle cover problems by showing that multi-criteria graph factor problems admit fully polynomial-time randomized approximation schemes.

## Preview

### References

1. 1.
Angel, E., Bampis, E., Gourvés, L.: Approximating the Pareto curve with local search for the bicriteria TSP(1,2) problem. Theoretical Computer Science 310(1–3), 135–146 (2004)
2. 2.
Angel, E., Bampis, E., Gourvès, L., Monnot, J.: (Non-)approximability for the multi-criteria TSP(1,2). In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 329–340. Springer, Heidelberg (2005)
3. 3.
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)
4. 4.
Barahona, F., Pulleyblank, W.R.: Exact arborescences, matchings and cycles. Discrete Applied Mathematics 16(2), 91–99 (1987)
5. 5.
Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1,2)-TSP. In: Proc. of the 17th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 641–648. SIAM, Philadelphia (2006)
6. 6.
Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)
7. 7.
Bläser, M., Manthey, B., Sgall, J.: An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality. Journal of Discrete Algorithms (to appear)Google Scholar
8. 8.
Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Information Processing Letters 75(3), 133–138 (2000)
9. 9.
Sunil Chandran, L., Shankar Ram, L.: Approximations for ATSP with parameterized triangle inequality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 227–237. Springer, Heidelberg (2002)
10. 10.
Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA (1976)Google Scholar
11. 11.
Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. International Transactions in Operational Research 7(1), 5–31 (2000)
12. 12.
Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
13. 13.
Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectrum 22(4), 425–460 (2000)
14. 14.
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)
15. 15.
Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. Journal of the ACM 52(4), 602–626 (2005)
16. 16.
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons, Chichester (1985)
17. 17.
Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987)
18. 18.
Papadimitriou, C.H.: The complexity of restricted spanning tree problems. Journal of the ACM 29(2), 285–309 (1982)
19. 19.
Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proc. of the 41st Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 86–92. IEEE Computer Society, Los Alamitos (2000)
20. 20.
Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM Journal on Computing 6(3), 563–581 (1977)
21. 21.
Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canadian Journal of Mathematics 6, 347–352 (1954)
22. 22.
Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar