Advertisement

On Bin Packing with Conflicts

  • Leah Epstein
  • Asaf Levin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4368)

Abstract

We consider the offline and online versions of a bin packing problem called bin packing with conflicts. Given a set of items V={ 1,2, ...,n} with sizes s 1,s 2 ...,s n ∈[0,1] and a conflict graph G=(V,E), the goal is to find a partition of the items into independent sets of G, where the total size of each independent set is at most one, so that the number of independent sets in the partition is minimized. This problem is clearly a generalization of both the classical (one-dimensional) bin packing problem where E=∅ and of the graph coloring problem where s i =0 for all i=1,2, ...,n. Since coloring problems on general graphs are hard to approximate, following previous work, we study the problem on specific graph classes. For the offline version we design improved approximation algorithms for perfect graphs and other special classes of graphs, these are a \(\frac 52=2.5\)-approximation algorithm for perfect graphs, a \(\frac 73\approx 2.33333\)-approximation for a sub-class of perfect graphs, which contains interval graphs, and a \(\frac 74=1.75\)-approximation for bipartite graphs. For the online problem on interval graphs, we design a 4.7-competitive algorithm and show a lower bound of \(\frac {155}{36}\approx 4.30556\) on the competitive ratio of any algorithm. To derive the last lower bound, we introduce the first lower bound on the asymptotic competitive ratio of any online bin packing algorithm with known optimal value, which is \(\frac {47}{36}\approx 1.30556\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, E., Hassin, R.: On local search for weighted packing problems. Mathematics of Operations Research 23, 640–648 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Baker, B.S., Coffman Jr., E.G.: A tight asymptotic bound for next-fit-decreasing bin-packing. SIAM J. on Algebraic and Discrete Methods 2(2), 147–152 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Coffman Jr., E.G., Csirik, J., Leung, J.: Variants of classical bin packing. In: Gonzalez, T.F. (ed.) Approximation algorithms and metaheuristics. Chapman and Hall/CRC (to appear)Google Scholar
  4. 4.
    Crescenzi, P., Kann, V., Halldórsson, M.M., Karpinski, M., Woeginger, G.J.: A compendium of NP optimization problems, http://www.nada.kth.se/viggo/problemlist/compendium.html
  5. 5.
    de Werra, D.: An introduction to timetabling. European Journal of Operational Research 19, 151–162 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Galambos, G., Woeginger, G.J.: Repacking helps in bounded space online bin packing. Computing 49, 329–338 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Garey, M.R., Graham, R.L., Johnson, D.S., Yao, A.C.C.: Resource constrained scheduling as generalized bin packing. Journal of Combinatorial Theory (Series A) 21, 257–298 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)zbMATHGoogle Scholar
  10. 10.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics 17, 263–269 (1969)Google Scholar
  11. 11.
    Gyárfás, A., Lehel, J.: On-line and first-fit colorings of graphs. Journal of Graph Theory 12, 217–227 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hujter, M., Tuza, Z.: Precoloring extension, III: Classes of perfect graphs. Combinatorics, Probability and Computing 5, 35–56 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Irani, S., Leung, V.J.: Scheduling with conflicts, and applications to traffic signal control. In: Proc. of 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 85–94 (1996)Google Scholar
  14. 14.
    Jansen, K.: An approximation scheme for bin packing with conflicts. Journal of Combinatorial Optimization 3(4), 363–377 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling. Information and Computation 132, 85–108 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Jensen, T.R., Toft, B.: Graph coloring problems. Wiley, Chichester (1995)zbMATHGoogle Scholar
  17. 17.
    Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3, 256–278 (1974)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive combinatorics. Congressus Numerantium 33, 143–153 (1981)MathSciNetGoogle Scholar
  19. 19.
    Lee, C.C., Lee, D.T.: A simple online bin packing algorithm. Journal of the ACM 32(3), 562–572 (1985)zbMATHCrossRefGoogle Scholar
  20. 20.
    Lovász, L., Saks, M., Trotter, W.T.: An on-line graph coloring algorithm with sublinear performance ratio. Discrete Math. 75, 319–325 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Marx, D.: Precoloring extension, http://www.cs.bme.hu/dmarx/prext.html
  22. 22.
    Marx, D.: Precoloring extension on chordal graphs (2004) (manuscript) Google Scholar
  23. 23.
    McCloskey, B., Shankar, A.: Approaches to bin packing with clique-graph conflicts. Technical Report UCB/CSD-05-1378, EECS Department, University of California, Berkeley (2005)Google Scholar
  24. 24.
    Oh, Y., Son, S.H.: On a constrained bin-packing problem. Technical Report CS-95-14, Department of Computer Science, University of Virginia (1995)Google Scholar
  25. 25.
    Schrijver, A.: Combinatorial optimization polyhedra and efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  26. 26.
    Seiden, S.S.: On the online bin packing problem. Journal of the ACM 49(5), 640–671 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res. Logist. 41(4), 579–585 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ullman, J.D.: The performance of a memory allocation algorithm. Technical Report 100, Princeton University, Princeton, NJ (1971)Google Scholar
  29. 29.
    van Vliet, A.: An improved lower bound for online bin packing algorithms. Information Processing Letters 43(5), 277–284 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yao, A.C.C.: New algorithms for bin packing. Journal of the ACM 27, 207–227 (1980)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Leah Epstein
    • 1
  • Asaf Levin
    • 2
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Department of StatisticsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations