A Randomized Algorithm for Online Unit Clustering

  • Timothy M. Chan
  • Hamid Zarrabi-Zadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4368)

Abstract

In this paper, we consider the online version of the following problem: partition a set of input points into subsets, each enclosable by a unit ball, so as to minimize the number of subsets used. In the one-dimensional case, we show that surprisingly the naïve upper bound of 2 on the competitive ratio can be beaten: we present a new randomized 15/8-competitive online algorithm. We also provide some lower bounds and an extension to higher dimensions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamy, U., Erlebach, T.: Online coloring of intervals with bandwidth. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl. 11, 209–218 (1998)MATHGoogle Scholar
  3. 3.
    Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46, 178–189 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clustering problems. In: Proc. 35th ACM Sympos. Theory Comput., pp. 30–39 (2003)Google Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  7. 7.
    Epstein, L., Levy, M.: Online interval coloring and variants. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 602–613. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34, 1302–1323 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proc. 20th ACM Sympos. Theory Comput., pp. 434–444 (1988)Google Scholar
  10. 10.
    Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inform. Process. Lett. 12(3), 133–137 (1981)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gonzalez, T.: Covering a set of points in multidimensional space. Inform. Process. Lett. 40, 181–188 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: Proc. 41st IEEE Sympos. Found. Comput. Sci., pp. 359–366 (2000)Google Scholar
  13. 13.
    Gyárfás, A., Lehel, J.: On-line and First-Fit colorings of graphs. J. Graph Theory 12, 217–227 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hochbaum, D.S., Maas, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)CrossRefMATHGoogle Scholar
  15. 15.
    Kierstead, H.A., Qin, J.: Coloring interval graphs with First-Fit. SIAM J. Discrete Math. 8, 47–57 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kierstead, H.A., Trotter, W.A.: An extremal problem in recursive combinatorics. Congressus Numerantium 33, 143–153 (1981)MathSciNetGoogle Scholar
  17. 17.
    Lipton, R.J., Tomkins, A.: Online interval scheduling. In: Proc. 5th Sympos. Discrete Algorithms, pp. 302–311 (1994)Google Scholar
  18. 18.
    Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25, 59–68 (1995)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Timothy M. Chan
    • 1
  • Hamid Zarrabi-Zadeh
    • 1
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations