Advertisement

How to Strengthen Any Weakly Unforgeable Signature into a Strongly Unforgeable Signature

  • Ron Steinfeld
  • Josef Pieprzyk
  • Huaxiong Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4377)

Abstract

Standard signature schemes are usually designed only to achieve weak unforgeability – i.e. preventing forgery of signatures on new messages not previously signed. However, most signature schemes are randomised and allow many possible signatures for a single message. In this case, it may be possible to produce a new signature on a previously signed message. Some applications require that this type of forgery also be prevented – this requirement is called strong unforgeability.

At PKC2006, Boneh Shen and Waters presented an efficient transform based on any randomised trapdoor hash function which converts a weakly unforgeable signature into a strongly unforgeable signature and applied it to construct a strongly unforgeable signature based on the CDH problem. However, the transform of Boneh et al only applies to a class of so-called partitioned signatures. Although many schemes fall in this class, some do not, for example the DSA signature. Hence it is natural to ask whether one can obtain a truly generic efficient transform based on any randomised trapdoor hash function which converts any weakly unforgeable signature into a strongly unforgeable one. We answer this question in the positive by presenting a simple modification of the Boneh-Shen-Waters transform. Our modified transform uses two randomised trapdoor hash functions.

Keywords

Digital signature strong unforgeability trapdoor hash function provable security transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically Strong Undeniable Signatures, Unconditionally Secure for the Signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption. ACM Transactions on Information and System Security (ACM TISSEC) 3, 161–185 (2000)CrossRefGoogle Scholar
  7. 7.
    Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures Without the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Goldreich, O.: Foundations of Cryptography, vol. II. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Krawczyk, H., Rabin, T.: Chameleon Signatures. In: NDSS 2000 (2000), Available at: http://www.isoc.org/isoc/conferences/ndss/2000/proceedings/
  11. 11.
    Kurosawa, K., Heng, S.: The Power of Identification Schemes. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 364–377. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    National Institute of Standards and Technology (NIST). Digital Signature Standard (DSS). Federal Information Processing Standards Publication 186-2 (January 2000)Google Scholar
  13. 13.
    Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Teranishi, I., Oyama, T., Ogata, W.: General Conversion for Obtaining Strongly Existentially Unforgeable Signatures. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ron Steinfeld
    • 1
  • Josef Pieprzyk
    • 1
  • Huaxiong Wang
    • 1
    • 2
  1. 1.Centre for Advanced Computing – Algorithms and Cryptography (ACAC), Dept. of ComputingMacquarie UniversityNorth RydeAustralia
  2. 2.Nanyang Technological UniversitySingapore

Personalised recommendations