Relational Logics and Their Applications

  • Joanna Golińska-Pilarek
  • Ewa Orłowska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4342)

Abstract

Logics of binary relations corresponding, among others, to the class RRA of representable relation algebras and the class FRA of full relation algebras are presented together with the proof systems in the style of dual tableaux. Next, the logics are extended with relational constants interpreted as point relations. Applications of these logics to reasoning in non-classical logics are recalled. An example is given of a dual tableau proof of an equation which is RRA-valid, while not RA-valid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burrieza, A., Ojeda-Aciego, M., Orłowska, E.: Relational Approach to Order-of-Magnitude Reasoning. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS, vol. 4342, pp. 105–124. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Dallien, J., MacCaull, W.: RelDT: A relational dual tableaux automated theorem prover, (preprint, 2005)Google Scholar
  3. 3.
    Demri, S., Orłowska, E.: Towards reasoning about Hoare relations. Annals of Mathematics and Artificial Intelligence 12, 265–289 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Demri, S., Orłowska, E.: Logical analysis of demonic nondeterministic programs. Theoretical Computer Science 202, 173–202 (1996)CrossRefGoogle Scholar
  5. 5.
    Formisano, A., Omodeo, E., Orłowska, E.: A PROLOG tool for relational translation of modal logics: A front-end for relational proof systems. In: Beckert, B. (ed) TABLEAUX 2005, Position Papers and Tutorial Descriptions, Universität Koblenz-Landau, Fachberichte Informatik No 12, pp. 1–10 (2005)Google Scholar
  6. 6.
    Formisano, A., Nicolosi Asmundo, M.: An efficient relational deductive system for propositional non-classical logics. Journal of Applied Non-Classical Logics (to appear, 2006)Google Scholar
  7. 7.
    Formisano, A., Omodeo, E.G., Orłowska, E.: An Environment for Specifying Properties of Dyadic Relations and Reasoning About Them II: Relational Presentation of Non-classical Logics. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS, vol. 4342, pp. 89–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Frias, M., Orłowska, E.: A proof system for fork algebras and its applications to reasoning in logics based on intuitionism. Logique et Analyse, 150-151-152, 239-284 (1995)Google Scholar
  9. 9.
    Golińska-Pilarek, J., Orłowska, E.: Tableaux and dual Tableaux: Transformation of proofs. In: Studia Logica (to appear, 2006)Google Scholar
  10. 10.
    Konikowska, B., Morgan, C., Orłowska, E.: A relational formalisation of arbitrary finite-valued logics. Logic Journal of IGPL 6(5), 755–774 (1998)MATHCrossRefGoogle Scholar
  11. 11.
    MacCaull, W.: Relational proof theory for linear and other substructural logics. Logic Journal of IGPL 5, 673–697 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    MacCaull, W.: Relational tableaux for tree models, language models and information networks. In: Orłowska, E. (ed.) Logic at Work. Essays dedicated to the memory of Helena Rasiowa. Springer, Heidelberg (1998a)Google Scholar
  13. 13.
    MacCaull, W.: Relational semantics and a relational proof system for full Lambek Calculus. Journal of Symbolic Logic 63(2), 623–637 (1998b)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    MacCaull, W., Orłowska, E.: Correspondence results for relational proof systems with applications to the Lambek calculus. Studia Logica 71, 279–304 (2002)CrossRefGoogle Scholar
  15. 15.
    Orłowska, E.: Relational interpretation of modal logics. In: Andreka, H., Monk, D., Nemeti, I. (eds.) Algebraic Logic, Colloquia Mathematica Societatis Janos Bolyai, vol. 54, pp. 443–471. North Holland, Amsterdam (1988)Google Scholar
  16. 16.
    Orłowska, E.: Relational proof systems for relevant logics. Journal of Symbolic Logic 57, 1425–1440 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Orłowska, E.: Dynamic logic with program specifications and its relational proof system. Journal of Applied Non-Classical Logic 3, 147–171 (1993)MATHGoogle Scholar
  18. 18.
    Orłowska, E.: Relational semantics for non-classical logics: Formulas are relations. In: Woleński, J. (ed.) Philosophical Logic in Poland, pp. 167–186. Kluwer, Dordrecht (1994)Google Scholar
  19. 19.
    Orłowska, E.: Temporal logics in a relational framework. In: Bolc, L., Szałas, A. (eds.) Time and Logic-a Computational Approach, pp. 249–277. University College London Press (1995)Google Scholar
  20. 20.
    Orłowska, E.: Relational proof systems for modal logics. In: Wansing, H. (ed.) Proof Theory of Modal Logics, pp. 55–77. Kluwer, Dordrecht (1996)Google Scholar
  21. 21.
    Orłowska, E.: Relational formalisation of non-classical logics. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science, pp. 90–105. Springer, Wien/New York (1997)Google Scholar
  22. 22.
    Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Polish Scientific Publishers, Warsaw (1963)MATHGoogle Scholar
  23. 23.
    Schmidt, G., Ströhlein, T.: Relations and graphs. In: EATCS Monographs on Theoretical Computer Science. Springer, HeidelbergGoogle Scholar
  24. 24.
    Tarski, A.: On the calculus of relations. The Journal of Symbolic Logic 6, 73–89 (1941)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Tarski, A., Givant, S.R.: A Formalization of Set Theory without Variables. vol. 41. Colloquium Publications, American Mathematical Society (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joanna Golińska-Pilarek
    • 1
  • Ewa Orłowska
    • 1
  1. 1.National Institute of TelecommunicationsWarsawPoland

Personalised recommendations