Advertisement

Social Software for Coalition Formation

  • Agnieszka Rusinowska
  • Rudolf Berghammer
  • Patrik Eklund
  • Jan-Willem van der Rijt
  • Marc Roubens
  • Harrie de Swart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4342)

Abstract

This paper concerns an interdisciplinary approach to coalition formation. We apply the MacBeth software, relational algebra, the RelView tool, graph theory, bargaining theory, social choice theory, and consensus reaching to a model of coalition formation. A feasible government is a pair consisting of a coalition of parties and a policy supported by this coalition. A feasible government is stable if it is not dominated by any other feasible government. Each party evaluates each government with respect to certain criteria. MacBeth helps to quantify the importance of the criteria and the attractiveness and repulsiveness of governments to parties with respect to the given criteria. Feasibility, dominance, and stability are formulated in relation-algebraic terms. The RelView tool is used to compute the dominance relation and the set of all stable governments. In case there is no stable government, i.e., in case the dominance relation is cyclic, we apply graph-theoretical techniques for breaking the cycles. If the solution is not unique, we select the final government by applying bargaining or appropriate social choice rules. We describe how a coalition may form a government by reaching consensus about a policy.

Keywords

stable government MacBeth relational algebra RelView graph theory bargaining social choice rule consensus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Austen-Smith, D., Banks, J.: Elections, coalitions, and legislative outcomes. American Political Science Review 82, 405–422 (1988)CrossRefGoogle Scholar
  2. 2.
    Axelrod, R.: Conflict of Interest; A Theory of Divergent Goals with Applications to Politics. Markham, Chicago (1970)Google Scholar
  3. 3.
    Bana e Costa, C.A., Vansnick, J.C.: The MACBETH approach: basic ideas, software and an application. In: Meskens, N., Roubens, M. (eds.) Advances in Decision Analysis, pp. 131–157. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  4. 4.
    Bana e Costa C.A., Vansnick J.C.: A fundamental criticism to Saaty’s use of the eigenvalue procedure to derive priorities. LSE OR Working Paper 01.42, 2001. Downloadable via internet (2001)Google Scholar
  5. 5.
    Bana e Costa, C.A., De Corte, J.M., Vansnick, J.C.: MACBETH, LSE OR Working Paper 03.56 (2003)Google Scholar
  6. 6.
    Baron, D.: Government formation and endogenous parties. American Political Science Review 87, 34–47 (1993)CrossRefGoogle Scholar
  7. 7.
    Behnke, R., Berghammer, R., Meyer, E., Schneider, P.: RELVIEW– A system for calculation with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Berghammer, R., Fronk, A.: Considering design tasks in OO-software engineering using relations and relation-based tools. Journal on Relational Methods in Computer Science 1, 73–92 (2004)Google Scholar
  9. 9.
    Berghammer, R., Fronk, A.: Exact computation of minimum feedback vertex sets with relational algebra. Fundamenta Informaticae 70(4), 301–316 (2005)MathSciNetGoogle Scholar
  10. 10.
    Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relational algebra using binary decision diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 241–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Berghammer, R., Rusinowska, A., de Swart, H.: Applying relational algebra and RELVIEW to coalition formation. European Journal of Operational Research (forthcoming, 2005)Google Scholar
  12. 12.
    Berghammer, R., Rusinowska, A., de Swart, H.: Graph theory, RELVIEW and coalitions (submitted, 2005)Google Scholar
  13. 13.
    Berghammer, R., Schmidt, G., Winter, M.: RelView and Rath – Two systems for dealing with relations. In: [22], pp. 1-16 (2003)Google Scholar
  14. 14.
    Berghammer, R., von Karger, B., Ulke, C.: Relation-algebraic analysis of Petri nets with RELVIEW. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 49–69. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Brams, S.J., Fishburn, P.C.: Approval Voting. Birkhäuser, Boston (1983)zbMATHGoogle Scholar
  16. 16.
    Brams, S.J., Fishburn, P.C.: Voting procedures. In: Arrow, K., Sen, A., Suzumura, K. (eds.) Handbook of Social Choice and Welfare. Elsevier Science, Amsterdam (2002)Google Scholar
  17. 17.
    Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in Computer Science. Advances in Computing Science. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  18. 18.
    Carlsson, C., Ehrenberg, D., Eklund, P., Fedrizzi, M., Gustafsson, P., Merkuryeva, G., Riissanen, T., Ventre, A.: Consensus in distributed soft environments. European Journal of Operational Research 61, 165–185 (1992)CrossRefGoogle Scholar
  19. 19.
    Condorcet: Sur les Elections et autres Textes. Corpus des Oeuvres de Philosophie en Langue Française. Librairie Artheme Fayard, Paris (1986)Google Scholar
  20. 20.
    De Borda, J.-C.: Mémoire sur les Elections au Scrutin. English translation by De Grazia A, Mathematical Derivation of an Election System. Isis 44, 42–51 (1953)CrossRefGoogle Scholar
  21. 21.
    de Swaan, A.: Coalition Theories and Cabinet Formations. Elsevier, Amsterdam (1973)Google Scholar
  22. 22.
    de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.): Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  23. 23.
    de Swart, H., van Deemen, A., Van der Hout, E., Kop, P.: Categoric and ordinal voting: an overview. In: [22], pp. 147–195 (2003)Google Scholar
  24. 24.
    De Vries, M.: Governing with your closest neighbour: An assessment of spatial coalition formation theories, Ph.D. Thesis, Print Partners Ipskamp (1999)Google Scholar
  25. 25.
    Eklund, P., Rusinowska, A., de Swart, H.: Consensus reaching in committees. European Journal of Operational Research (forthcoming, 2004) Google Scholar
  26. 26.
    Eklund, P., Rusinowska, A., de Swart, H.: A consensus model of political decision-making (submitted, 2004)Google Scholar
  27. 27.
    Fishburn, P.C., Rubinstein, A.: Time preferences. International Economic Review 23, 667–694 (1982)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Gansner, E., Koutsofios, E., North, C., Vo, K.: A technique for drawing directed graphs. IEEE Trans. Software Eng. 19, 214–230 (1993)CrossRefGoogle Scholar
  29. 29.
    Grofman, B.: A dynamic model of protocoalition formation in ideological n-space. Behavioral Science 27, 77–90 (1982)CrossRefGoogle Scholar
  30. 30.
    Kahan, J., Rapoport, A.: Theories of Coalition Formation. Lawrence Erlbauw Associates Publishers (1984)Google Scholar
  31. 31.
    Laver, M., Schofield, N.: Multiparty Government; The Politics of Coalition in Europe. Oxford University Press, Oxford (1990)Google Scholar
  32. 32.
    Laver, M., Shepsle, K.A.: Coalitions and cabinet government. American Political Science Review 3, 873–890 (1990)Google Scholar
  33. 33.
    Laver, M., Shepsle, K.: Making and Breaking Governments; Cabinet and Legislatures in Parliamentary Democracies. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  34. 34.
    Leiserson, M.: Coalitions in Politics: A Theoretical and Empirical Study,Doctoral Dissertation. University Microfilms, Inc., Ann Arbor, Michigan (1966)Google Scholar
  35. 35.
    Leiserson, M.: Factions and coalition in one-party Japan: an interpretation based on the theory of games. American Political Science Review 62, 770–787 (1968)CrossRefzbMATHGoogle Scholar
  36. 36.
    McKelvey, R., Ordeshook, P., Winer, M.: The competitive solution for n-person games without transferable utility with an application to committee games. American Political Science Review 72, 599–615 (1978)CrossRefGoogle Scholar
  37. 37.
    Osborne, M.J., Rubinstein, A.: Bargaining and Markets. Academic Press, San Diego (1990)zbMATHGoogle Scholar
  38. 38.
    Peleg, B.: A theory of coalition formation in committees. Journal of Mathematical Economics 7, 115–134 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Peleg, B.: Coalition formation in simple games with dominant players. International Journal of Game Theory 10, 11–33 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Riker, W.H.: The Theory of Political Coalitions. Yale University Press, New Haven (1962)Google Scholar
  41. 41.
    Roubens, M., Rusinowska, A., de Swart, H.: Using MACBETH to determine utilities of governments to parties in coalition formation. European Journal of Operational Research (forthcoming, 2006)Google Scholar
  42. 42.
    Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97–109 (1982)CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Rusinowska, A., de Swart, H.: Negotiating a stable government - an application of bargaining theory to a coalition formation model. (submitted, 2004)Google Scholar
  44. 44.
    Rusinowska, A., de Swart, H., Van der Rijt, J.W.: A new model of coalition formation. Social Choice and Welfare 24, 129–154 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234–281 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  47. 47.
    Schmidt, G., Ströhlein, T.: Relations and Graphs. In: Discrete Mathematics for Computer Scientists, EATCS Monographs on Theoret. Comput. Sci. Springer, Heidelberg (1993)Google Scholar
  48. 48.
    Schofield, N.: Political competition and multiparty coalition governments. European Journal of Political Research 23, 1–33 (1993)CrossRefGoogle Scholar
  49. 49.
    Schofield, N.: Party competition in a spatial model of coalition formation. In: Barnett, W., Hinich, M., Schofield, N. (eds.) Political Economy; Institutions, Competition and Representation. Cambridge University Press, Cambridge (1993)Google Scholar
  50. 50.
    Schofield, N.: Coalition politics; A formal model and empirical analysis. Journal of Theoretical Politics 7, 245–281 (1995)CrossRefGoogle Scholar
  51. 51.
    Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory 4, 25–55 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Shepsle, K.A.: Institutional arrangements and equilibrium in multidimensional voting models. American Journal of Political Science 23, 27–59 (1979)CrossRefGoogle Scholar
  53. 53.
    van Deemen, A.: Coalition formation in centralized policy games. Journal of Theoretical Politics 3, 139–161 (1991)CrossRefGoogle Scholar
  54. 54.
    van Deemen, A.: Coalition Formation and Social Choice. Kluwer, Dordrecht (1997)zbMATHGoogle Scholar
  55. 55.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Agnieszka Rusinowska
    • 1
    • 2
  • Rudolf Berghammer
    • 3
  • Patrik Eklund
    • 4
  • Jan-Willem van der Rijt
    • 5
  • Marc Roubens
    • 6
    • 7
  • Harrie de Swart
    • 8
  1. 1.Nijmegen School of ManagementRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Mathematical EconomicsWarsaw School of EconomicsWarsawPoland
  3. 3.Institute of Computer ScienceUniversity of KielKielGermany
  4. 4.Department of Computing ScienceUmeå UniversityUmeåSweden
  5. 5.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands
  6. 6.Institute of Mathematics, B37University of LiègeLiègeBelgium
  7. 7.Faculté Polytechnique de MonsMonsBelgium
  8. 8.Faculty of PhilosophyTilburg UniversityLE TilburgThe Netherlands

Personalised recommendations