Advertisement

Towards a Characterization of P Systems with Minimal Symport/Antiport and Two Membranes

  • Artiom Alhazov
  • Yurii Rogozhin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

We prove that any set of numbers containing zero generated by symport/antiport P systems with two membranes and minimal cooperation is finite (for both symport/antiport P systems and for purely symport P systems). On the other hand, one additional object in the output membrane allows symport/antiport P systems (purely symport P systems) with two membranes and minimal cooperation generate any recursively enumerable sets of natural numbers without zero. Thus we improve our previous results for symport/antiport P systems with two membranes and minimal cooperation from three “garbage” objects down to one object and for purely symport P systems from six objects down to one object. Thus we show the optimality of these results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Freund, R., Rogozhin, Y.: Some Optimal Results on Communicative P Systems with Minimal Cooperation. In: Gutiérrez-Naranjo, M.A., Păun, G., Pérez-Jiménez, M.J. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix Editora, Sevilla, pp. 23–36 (2005)Google Scholar
  3. 3.
    Alhazov, A., Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: Communicative P Systems with Minimal Cooperation. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 161–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Alhazov, A., Rogozhin, Y.: Minimal Cooperation in Symport/Antiport P Systems with One Membrane. In: Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Third Brainstorming Week on Membrane Computing, RGNC TR 01/2005, University of Seville, Fénix Editora, Sevilla, pp. 29–34 (2005)Google Scholar
  5. 5.
    Alhazov, A., Rogozhin, Y.: Towards a characterization of P systems with minimal symport/Antiport and two membranes. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 135–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Alhazov, A., Rogozhin, Y., Verlan, S.: Symport/Antiport Tissue P Systems with Minimal Cooperation. In: Gutiérrez-Naranjo, M.A., Păun, G., Pérez-Jiménez, M.J. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix Editora, Sevilla, pp. 37–52 (2005)Google Scholar
  7. 7.
    Bernardini, F., Gheorghe, M.: On the Power of Minimal Symport/Antiport. In: Alhazov, A., Martín-Vide, C., Păun, G.(eds.) Workshop on Membrane Computing, WMC 2003, Tarragona, TR 28/03, Research Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona, pp. 72–83 (2003)Google Scholar
  8. 8.
    Bernardini, F., Păun, A.: Universality of Minimal Symport/Antiport: Five Membranes Suffice. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 43–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Freund, R., Oswald, M.: GP Systems with Forbidding Context. Fundamenta Informaticae 49(1-3), 81–102 (2002)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Channels. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 261–269. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Freund, R., Păun, A.: Membrane Systems with Symport/Antiport Rules: Universality Results. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 270–287. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Frisco, P.: About P Systems with Symport/Antiport. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on Membrane Computing, TR 01/2004, Research Group on Natural Computing, University of Seville, pp. 224–236 (2004)Google Scholar
  13. 13.
    Frisco, P., Hoogeboom, H.J.: P Systems with Symport/Antiport Simulating Counter Automata. Acta Informatica 41(2-3), 145–170 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Frisco, P., Hoogeboom, H.J.: Simulating Counter Automata by P Systems with Symport/Antiport. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 288–301. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Kari, L., Martín-Vide, C., Păun, A.: On the Universality of P Systems with Minimal Symport/Antiport Rules. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 254–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: About P Systems with Minimal Symport/Antiport Rules and Four Membranes. In: Mauri, G., Păun, G., Zandron, C. (eds.) Fifth Workshop on Membrane Computing (WMC5), Universitá di Milano-Bicocca, Milan, pp. 283–294 (2004)Google Scholar
  17. 17.
    Martín-Vide, C., Păun, A., Păun, G.: On the Power of P Systems with Symport Rules. Journal of Universal Computer Science 8(2), 317–331 (2002)MathSciNetGoogle Scholar
  18. 18.
    Minsky, M.L.: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  19. 19.
    Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20, 295–305 (2002)zbMATHCrossRefGoogle Scholar
  20. 20.
    Păun, G.: Computing with Membranes. Journal of Computer and Systems Science 61, 108–143 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  22. 22.
    Păun, G.: Further Twenty Six Open Problems in Membrane Computing. In: Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Third Brainstorming Week on Membrane Computing, RGNC TR 01/2005, University of Seville, Fénix Editora, Sevilla, pp. 249–262 (2005)Google Scholar
  23. 23.
    Păun, G.: 2006 Research Topics in Membrane Computing. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, vol. 1, pp. 235–251. Fénix Edit., Sevilla (2006)Google Scholar
  24. 24.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages (3 volumes). Springer, Berlin (1997)Google Scholar
  25. 25.
    Vaszil, G.: On the size of P systems with minimal symport/Antiport. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2004. LNCS, vol. 3365, pp. 422–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Verlan, S.: Optimal Results on Tissue P Systems with Minimal Symport/ Antiport. In: EMCC meeting, Lorentz Center, Leiden (2004)Google Scholar
  27. 27.
    Verlan, S.: Tissue P Systems with Minimal Symport/Antiport. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 418–429. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Yurii Rogozhin
    • 1
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of Moldova 
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain

Personalised recommendations