Advertisement

Extended Spiking Neural P Systems

  • Artiom Alhazov
  • Rudolf Freund
  • Marion Oswald
  • Marija Slavkovik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

We consider extended variants of spiking neural P systems and show how these extensions of the original model allow for easy proofs of the computational completeness of extended spiking neural P systems and for the characterization of semilinear sets and regular languages by finite extended spiking neural P systems (defined by having only finite checking sets in the rules assigned to the cells) with only a bounded number of neurons.

Keywords

Output Neuron Regular Language Bounded Number Register Machine Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, H., Freund, R., Ionescu, M., Păun, G., Pé rez-Jiménez, M.J.: On String Languages Generated by Spiking Neural P Systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Research Group on Natural Computing, Sevilla University, Fénix Editora, vol. I, pp. 169–194 (2006)Google Scholar
  2. 2.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)Google Scholar
  3. 3.
    Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the Nonterminal Complexity of Graph-controlled Grammars. In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) Seventh International Workshop on Descriptional Complexity of Formal Systems, pp. 110–121 (2005)Google Scholar
  4. 4.
    Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Channels. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 261–269. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Freund, R., Oswald, M.: GP Systems with Forbidding Context. Fundamenta Informaticae 49, 81–102 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Freund, R., Păun, G.: From Regulated Rewriting to Computing with Membranes: Collapsing Hierarchies. Theoretical Computer Science 312, 143–188 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue-like P systems with channel states. Theoretical Computer Science 330, 101–116 (2004)CrossRefGoogle Scholar
  8. 8.
    Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge Univ. Press, Cambridge (2002)MATHGoogle Scholar
  9. 9.
    Ibarra, O.H., Păun, A., Păun, G., Rodrí guez-Patón, A., Sosík, P., Woodworth, S.: Normal Forms for Spiking Neural P Systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Nú ñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Research Group on Natural Computing, Sevilla University, Fénix Editora, vol. II, pp. 105–136 (2006)Google Scholar
  10. 10.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)MATHMathSciNetGoogle Scholar
  11. 11.
    Maass, W.: Computing with spikes. Special Issue on Foundations of Information Processing of TELEMATIK 8(1), 32–36 (2002)Google Scholar
  12. 12.
    Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: Tissue P systems. In: H. Ibarra, O., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  15. 15.
    Păun, G.: Computing with Membranes: An Introduction. Springer, Berlin (2002)Google Scholar
  16. 16.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P systems. Intern. J. Found Computer Sci. (to appear, 2006) (also available at [20])Google Scholar
  17. 17.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Infinite spike trains in spiking neural P systems (submitted, 2006)Google Scholar
  18. 18.
    Păun, G., Sakakibara, Y., Yokomori, T.: P systems on graphs of restricted forms. Publicationes Mathematicae Debrecen 60, 635–660 (2006)Google Scholar
  19. 19.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages (3 volumes). Springer, Berlin (1997)Google Scholar
  20. 20.
    The P Systems Web Page: http://psystems.disco.unimib.it

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Rudolf Freund
    • 3
  • Marion Oswald
    • 3
  • Marija Slavkovik
    • 3
  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  3. 3.Faculty of InformaticsVienna University of TechnologyWienAustria

Personalised recommendations