Formalizing Spherical Membrane Structures and Membrane Proteins Populations

  • Daniela Besozzi
  • Grzegorz Rozenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

We present a formalization of membrane structure by using a parametric 2-dimensional spherical surface, where membrane proteins reside and can move, according to prescribed operations. A more detailed formalization of membrane proteins acting as transporters is also given, thus possibly allowing a global scale analysis of ion flows across a membrane. Several other applications, both biology and computation oriented, are proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzoli, S., Ardelean, I.I., Besozzi, D., Gerla, B., Manara, C.: P systems under uncertainty: the case of transmembrane proteins. In: Proceedings of Brainstorming Workshop on Uncertainty in Membrane Computing, Palma de Mallorca, November 8-10, pp. 107–117 (2004)Google Scholar
  2. 2.
    Aguzzoli, S., Besozzi, D., Gerla, B., Manara, C.: P systems with vague boundaries: the t-norm approach. In: Proceedings of Brainstorming Workshop on Uncertainty in Membrane Computing, Palma de Mallorca, November 8-10, pp. 97–105 (2004)Google Scholar
  3. 3.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  4. 4.
    Ardelean, I.I., Besozzi, D.: On modeling ion fluxes across biological membranes with P systems. In: Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Proceedings of the Third Brainstorming Week on Membrane Computing, RGNC Report 01/2005, Sevilla, January 31–February 4, pp. 35–42 (2005)Google Scholar
  5. 5.
    Ardelean, I.I., Besozzi, D.: Some notes on the interplay between P systems and chemotaxis in Bacteria. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Fénix Editora, Sevilla, January 30 - February 3, vol. I, pp. 41–48 (2006)Google Scholar
  6. 6.
    Ardelean, I.I., Besozzi, D., Garzon, M.H., Mauri, G., Roy, S.: P system models for mechanosensitive channels. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing. Springer, Berlin (2005)Google Scholar
  7. 7.
    Atkins, P.W., Jones, L.L.: Chemistry: molecules, matter, and change, 3rd edn. W.H. Freeman and Co., New York (1997)Google Scholar
  8. 8.
    Besozzi, D., Busi, N., Franco, G., Freund, R., Păun, G.: Two universality results for (mem)brane systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Fénix Editora, Sevilla, January 30–February 3, vol. I, pp. 49–62 (2006)Google Scholar
  9. 9.
    Besozzi, D., Ciobanu, G.: A P system description of the sodium-potassium pump. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 210–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Brown, D.A., London, E.: Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998)CrossRefGoogle Scholar
  11. 11.
    Cardelli, L.: Brane calculi. Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Cardelli, L., Păun, G.: An universality result for (mem)brane calculus based on mate/drip operations. International Journal of Foundations of Computer Science 17(1), 49–68 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cho, W., Stahelin, R.V.: Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151 (2005)CrossRefGoogle Scholar
  14. 14.
    Cossu, F.: Modelli discreti per il trasporto del calcio attraverso la membrana plasmatica, Graduation Thesis, University of Milano, Italy (2005)Google Scholar
  15. 15.
    Danos, V., Pradalier, S.: Projective brane calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Dean, M.: The Human ATP-Binding Cassette (ABC) Transporter Superfamily, National Library of Medicine (US), NCBI (2002), http://www.ncbi.nlm.nih.gov/
  17. 17.
    Engelman, D.M.: Membranes are more mosaic than fluid. Nature 438, 578–580 (2005)CrossRefGoogle Scholar
  18. 18.
    Fill, M., Copello, J.A.: Ryanodine receptors calcium release channels. Physiol. Rev. 82, 893–922 (2002)Google Scholar
  19. 19.
    Gouaux, E., MacKinnon, R.: Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005)CrossRefGoogle Scholar
  20. 20.
    Jurica, M.S., Stoddard, B.L.: Mind your B’s and R’s: bacterial chemotaxis, signal transduction and protein recognition. Current Biology 6, 809–813 (1998)Google Scholar
  21. 21.
    Kosniowski, C.: A First Course in Algebraic Topology. Cambridge University Press, Cambridge (1980)MATHCrossRefGoogle Scholar
  22. 22.
    Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R.S., Kondo, J., Fujiwara, T.: Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005)CrossRefGoogle Scholar
  23. 23.
    Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.E.: Molecular Cell Biology, 4th edn. W.H. Freeman and Co., New York (2000)Google Scholar
  24. 24.
    Marguet, D., Lenne, P.F., Rigneault, H., He, H.T.: Dynamics in the plasma membrane: how to combine fluidity and order. The EMBO Journal 25, 3446–3457 (2006)CrossRefGoogle Scholar
  25. 25.
    McMahon, H.T., Gallop, J.L.: Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005)CrossRefGoogle Scholar
  26. 26.
    Palmieri, N.: Un approccio stocastico alla modellazione del canale RyR, Graduation Thesis, University of Milano, Italy (2006)Google Scholar
  27. 27.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling EGFR signalling cascade using continuous membrane systems. In: Plotkin, G. (ed.) Proceedings of CMSB 2005, Edinburgh, April 3-5, pp. 118–129 (2005)Google Scholar
  28. 28.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Păun, G.: Computing with membranes – A variant: P systems with polarized membranes. International Journal of Foundations of Computer Science 11(1), 167–182 (2000)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Păun, G.: Membrane Computing. An introduction. Springer, Berlin (2002)MATHGoogle Scholar
  31. 31.
    Petsko, G.A., Ringe, D.: Protein Structure and Function. New Science Press Ltd. (2004)Google Scholar
  32. 32.
    Philipson, K.D., Nicoll, D.A.: Sodium-calcium exchange: a molecular perspective. Annual Review of Physiology 62, 111–133 (2000)CrossRefGoogle Scholar
  33. 33.
    Serysheva, I.I.: Structural insights into excitation-contraction coupling by electron cryomicroscopy. Biochemistry (Moscow) 69(11), 1226–1232 (2004)CrossRefGoogle Scholar
  34. 34.
    Singer, S.J.: Some early history of membrane molecular biology. Annual Review of Physiology 66, 1–27 (2004)CrossRefGoogle Scholar
  35. 35.
    Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)CrossRefGoogle Scholar
  36. 36.
    Ward, J.M.: Patch-clamping and other molecular approaches for the study of plasma membrane transporters demystified. Plant Physiology 114, 1151–1159 (1997)CrossRefGoogle Scholar
  37. 37.
    Wickner, W., Schekman, R.: Protein translocation across biological membranes. Science 310, 1452–1456 (2005)CrossRefGoogle Scholar
  38. 38.
    Zimmerberg, J., Kozlov, M.M.: How proteins produce cellular membrane curvature. Nature Reviews Molecular Cell Biology 7, 9–19 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniela Besozzi
    • 1
  • Grzegorz Rozenberg
    • 2
  1. 1.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly
  2. 2.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations