Towards a Hybrid Metabolic Algorithm

  • Luca Bianco
  • Federico Fontana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

During recent years stochastic algorithms have deserved much attention from the computational biology research communities. In this paper we derive a hybrid version of the formerly known Metabolic Algorithm that is enriched with stochastic features, whose impact on the dynamics of the system is especially prominent when the amount of metabolite becomes smaller. This hybrid procedure represents a first attempt to let the Metabolic Algorithm deal with low concentrations of substances according to a non-deterministic policy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 81–126. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Bianco, L., Fontana, F., Manca, V.: Reaction-driven membrane systems. In: Wang, L., Chen, K., Ong, Y.-S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 1155–1158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. International Journal of Foundations of Computer Science 17(1), 27–48 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cao, Y., Gillespie, D., Petzold, L.: Avoiding negative populations in explicit Poisson tau-leaping. J. of Chemical Physics 2005(123) (2005)Google Scholar
  5. 5.
    Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Berlin (2006)Google Scholar
  6. 6.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. of Computational Physics 22, 403 (1976)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  8. 8.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. of Chemical Physics 115(4), 1716–1733 (2001)CrossRefGoogle Scholar
  9. 9.
    Haseltine, E.L., Rawlings, J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. of Chemical Physics 117(15), 1357–1372 (2002)Google Scholar
  10. 10.
    Illner, R., Bohun, C.S., McCollum, S., van Roode, T.: Mathematical Modelling. American Mathematical Society, Providence (2005)MATHGoogle Scholar
  11. 11.
    Manca, V.: Topics and problems in metabolic P systems. In: Păun, G., Pérez-Jiménez, M.J. (eds.) Proc. of the Fourth Brainstorming Week on Membrane Computing (BWMC4), February 2006, Sevilla, Spain, Fenix Editora (2006)Google Scholar
  12. 12.
    Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  14. 14.
    Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287, 73–100 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: P systems: a new computational modelling tool for systems biology. Transactions in Computational Systems Biology (in press, 2006)Google Scholar
  16. 16.
    Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. International Journal of Foundations of Computer Science 17(1), 183–194 (2006)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. of Chemical Physics 122, 1–13 (2005)Google Scholar
  18. 18.
    Schrödinger, E.: What is life? With Mind and Matter and Autobiographical sketches. Cambridge University Press, Cambridge (1967)Google Scholar
  19. 19.
    Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 2004(28), 165–178 (2004)CrossRefGoogle Scholar
  20. 20.
    Zhang, X.: A hybrid algorithm for determining protein structure. IEEE Intelligent Systems 9(4), 66–74 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Bianco
    • 1
  • Federico Fontana
    • 1
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations