A Fibred Tableau Calculus for Modal Logics of Agents

  • Vineet Padmanabhan
  • Guido Governatori
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4327)

Abstract

In [15,19] we showed how to combine propositional multimodal logics using Gabbay’s fibring methodology. In this paper we extend the above mentioned works by providing a tableau-based proof technique for the combined/ fibred logics. To achieve this end we first make a comparison between two types of tableau proof systems, (graph & path), with the help of a scenario (The Friend’s Puzzle). Having done that we show how to uniformly construct a tableau calculus for the combined logic using Governatori’s labelled tableau system KEM. We conclude with a discussion on KEM’s features.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artosi, A., Benassi, P., Governatori, G., Rotolo, A.: Shakespearian modal logic: A labelled treatment of modal identity. In: Advances in Modal Logic, CSLI, vol. 1 (1998)Google Scholar
  2. 2.
    Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning: Cumulative consequence relations. Journal of Logic and Computation 12(6), 1027–1060 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baldoni, M.: Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. PhD thesis, Universita degli Studi di Torino, Italy (1998)Google Scholar
  4. 4.
    Blackburn, P., de Rijke, M.: Zooming in, zooming out. Journal of Logic, Language and Information (1996)Google Scholar
  5. 5.
    d’Avila Garcez, A.S., Gabbay, D.M.: Fibring neural networks. In: AAAI 2004, pp. 342–347. AAAI/MIT Press (2004) Google Scholar
  6. 6.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)MATHGoogle Scholar
  7. 7.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht (1983)Google Scholar
  8. 8.
    Gabbay, D.M.: Fibring Logics. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  9. 9.
    Gabbay, D.M., Governatori, G.: Dealing with label dependent deontic modalities. In: Norms, Logics and Information Systems. New Studies in Deontic Logic, IOS Press, Amsterdam (1998)Google Scholar
  10. 10.
    Gabbay, D.M., Governatori, G.: Fibred modal tableaux. In: Labelled Deduction. Kluwer academic Publishers, Dordrecht (2000)Google Scholar
  11. 11.
    Governatori, G.: Labelled tableau for multi-modal logics. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 79–94. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Governatori, G.: Un modello formale per il ragionamento giuridico. PhD thesis, CIRSFID, University of Bologna (1997)Google Scholar
  13. 13.
    Governatori, G.: On the relative complexity of modal tableaux. Electronic Notes in Theoretical Computer Science 78, 36–53 (2003)CrossRefGoogle Scholar
  14. 14.
    Governatori, G., Luppi, A.: Labelled tableaux for non-normal modal logics. In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 119–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Governatori, G., Padmanabhan, V., Sattar, A.: On Fibring Semantics for BDI Logics. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics. The Journal of Symbolic Logic 56(4), 1469–1485 (1991)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Llyod, J.W.: Modal higher-order logic for agents (2004), http://users.rsise.anu.edu.au/~jwl/beliefs.pdf
  18. 18.
    Lomuscio, A.: Information Sharing Among Ideal Agents. PhD thesis, School of Computer Science, University of Brimingham (1999)Google Scholar
  19. 19.
    Padmanabhan, V.: On Extending BDI Logics. PhD thesis, School of Information Technology, Griffith University, Brisbane, Australia (2003)Google Scholar
  20. 20.
    Rao, A.S., Georgeff, M.P.: Formal models and decision procedures for multi-agent systems. Technical note 61, Australian Artificial Intelligence Institute (1995)Google Scholar
  21. 21.
    Sernadas, A., Sernadas, C., Zanardo, A.: Fibring modal first-order logics: Completeness preservation. Logic Journal of the IGPL 10(4), 413–451 (2002)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wolter, F.: Fusions of modal logics revisited. In: Advances in Modal Logic. CSLI Lecture notes 87, vol. 1 (1997)Google Scholar
  23. 23.
    Wooldridge, M.: Reasoning about Rational Agents. The MIT Press, Cambridge (2000)MATHGoogle Scholar
  24. 24.
    Zanardo, A., Sernadas, A., Sernadas, C.: Fibring: Completeness preservation. Journal of Symbolic Logic 66(1), 414–439 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vineet Padmanabhan
    • 1
  • Guido Governatori
    • 1
  1. 1.School of Information Technology & Electrical EngineeringThe University of QueenslandQueenslandAustralia

Personalised recommendations