Applying Gaussian Distribution-Dependent Criteria to Decision Trees for High-Dimensional Microarray Data

  • Raymond Wan
  • Ichigaku Takigawa
  • Hiroshi Mamitsuka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4316)

Abstract

Biological data presents unique problems for data analysis due to its high dimensions. Microarray data is one example of such data which has received much attention in recent years. Machine learning algorithms such as support vector machines (SVM) are ideal for microarray data due to its high classification accuracies. However, sometimes the information being sought is a list of genes which best separates the classes, and not a classification rate.

Decision trees are one alternative which do not perform as well as SVMs, but their output is easily understood by non-specialists. A major obstacle with applying current decision tree implementations for high-dimensional data sets is their tendency to assign the same scores for multiple attributes. In this paper, we propose two distribution-dependant criteria for decision trees to improve their usefulness for microarray classification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996), Source available from: http://www.rulequest.com/Personal/ MATHGoogle Scholar
  2. 2.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  3. 3.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques with Java implementations, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)Google Scholar
  4. 4.
    Luo, R.C., Scherp, R.S., Lanzo, M.: Object identification using automated decision tree construction approach for robotics applications. Journal of Robotic Systems 4(3), 423–433 (1987)CrossRefGoogle Scholar
  5. 5.
    Shang, N., Breiman, L.: Distribution based trees are more accurate. In: Proc. International Conference on Neural Information Processing, pp. 133–138 (1996)Google Scholar
  6. 6.
    Loh, W.Y., Shih, Y.S.: Split selection methods for classification trees. Statistica Sinica 7, 815–840 (1997)MATHMathSciNetGoogle Scholar
  7. 7.
    Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. National Academy of Sciences USA 96(12), 6745–6750 (1999), Data: http://microarray.princeton.edu/oncology/affydata/index.html CrossRefGoogle Scholar
  8. 8.
    Yeung, K.Y., Bumgarner, R.E., Raftery, A.E.: Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21(10), 2394–2402 (2005)CrossRefGoogle Scholar
  9. 9.
    Wit, E., McClure, J.: Statistics for Microarrays. John Wiley & Sons Ltd, Chichester (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Giles, P.J., Kipling, D.: Normality of oligonucleotide microarray data and implications for parametric statistical analysis. Bioinformatics 19(17), 2254–2262 (2003)CrossRefGoogle Scholar
  11. 11.
    Zhang, H., Yu, C.Y., Singer, B., Xiong, M.: Recursive partitioning for tumor classification with gene expression microarray data. Proc. National Academy of Sciences USA 98(12), 6730–6735 (2001)CrossRefGoogle Scholar
  12. 12.
    Zhang, H., Yu, C.Y., Singer, B.: Cell and tumor classification using gene expression data: Construction of forests. Proc. National Academy of Sciences USA 100(7), 4168–4172 (2003)CrossRefGoogle Scholar
  13. 13.
    Su, Y., Murali, T.M., Pavlovic, V., Schaffer, M., Kasif, S.: RankGene: identification of diagnostic genes based on expression data. Bioinformatics 19(12), 1578–1579 (2003), Software available from: http://genomics10.bu.edu/yangsu/rankgene/ CrossRefGoogle Scholar
  14. 14.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1999)Google Scholar
  15. 15.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. Royal Society of London (A) 186, 453–461 (1946)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Golub, T.R., et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi CrossRefGoogle Scholar
  18. 18.
    Gordon, G.J., et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 62(17), 4963–4967 (2002), Data: http://www.chestsurg.org/publications/2002-microarray.aspx Google Scholar
  19. 19.
    Pomeroy, S.L., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expresion. Nature 415(6870), 436–442 (2002), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi CrossRefGoogle Scholar
  20. 20.
    Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. Proc. National Academy of Sciences USA 98(26), 15149–15154 (2001), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi CrossRefGoogle Scholar
  21. 21.
    Shipp, M.A., et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi CrossRefGoogle Scholar
  22. 22.
    Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Raymond Wan
    • 1
  • Ichigaku Takigawa
    • 1
  • Hiroshi Mamitsuka
    • 1
  1. 1.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityGokasho, UjiJapan

Personalised recommendations