Advertisement

Dynamic Fully Anonymous Short Group Signatures

  • Cécile Delerablée
  • David Pointcheval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4341)

Abstract

Group signatures allow members to sign on behalf of a group. Recently, several schemes have been proposed, in order to provide more efficient and shorter group signatures. However, this should be performed achieving a strong security level. To this aim, a formal security model has been proposed by Bellare, Shi and Zang, including both dynamic groups and concurrent join. Unfortunately, very few schemes satisfy all the requirements, and namely the shortest ones needed to weaken the anonymity notion.

We present an extremely short dynamic group signature scheme, with concurrent join, provably secure in this model. It achieves stronger security notions than BBS, and namely the full anonymity, while still shorter. The proofs hold under the q-SDH and the XDH assumptions, in the random oracle model.

Keywords

Group Signature Encryption Scheme Group Manager Random Oracle Full Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random Oracles Are Practical: a Paradigm for Designing Efficient Protocols. In: Proc. of the 1st CCS, pp. 62–73. ACM Press, New York (1993)Google Scholar
  4. 4.
    Bellare, M., Shi, H., Zang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–67. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006), Full version available from: http://www.di.ens.fr/users/pointche/CrossRefGoogle Scholar
  14. 14.
    Fouque, P.A., Pointcheval, D.: Threshold Cryptosystems Secure against Chosen-Ciphertext Attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 351. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Galbraith, S., Rotger, V.: Easy Decision-Diffie-Hellman Groups. LMS Journal of Computation and Mathematics 7, 201–218 (2004)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Kiayias, A., Yung, M.: Extracting Group Signatures from Traitor Tracing Schemes. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 630–648. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Kiayias, A., Yung, M.: Group Signatures with Efficient Concurrent Join. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applications. In: Proc. of the 21st STOC, pp. 33–43. ACM Press, New York (1989)Google Scholar
  19. 19.
    Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-free Group Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Paillier, P.: Public-Key Cryptosystems Based on Discrete Logarithms Residues. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cécile Delerablée
    • 1
  • David Pointcheval
    • 2
  1. 1.France Telecom Division R&DIssy-les-MoulineauxFrance
  2. 2.CNRS-ENSParisFrance

Personalised recommendations