Boundary Based Orientation of Polygonal Shapes

  • Joviša Žunić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4319)


The computation of a shape’s orientation is a common task in many areas of computer vision and image processing applications. It is usually an initial step or a part of data preprocessing. There are several approaches to the problem – most of them could be understood as the ‘area based’ ones. In spite of many unavoidable problems where working with shape boundaries in discrete space, the demand for a pure ‘boundary based’ method, seems to be very reasonable. Such a method for shapes having polygonal boundaries is presented in this paper. We define the shape orientation by the line that maximises the total sum of squared lengths of projections of all the shape boundary edges onto this line. Advantages and disadvantages of the method are discussed.


Shape orientation image processing early vision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cortadellas, J., Amat, J., de la Torre, F.: Robust Normalization of Silhouettes for Recognition Application. Patt. Rec. Lett. 25, 591–601 (2004)CrossRefGoogle Scholar
  2. 2.
    Freeman, H., Shapira, R.: Determining the Minimum-Area Encasing Rectangle for an Arbitrary Closed Curve. Comm. of the ACM 18, 409–413 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ha, V.H.S., Moura, J.M.F.: Afine-Permutation Invariance of 2-D Shape. IEEE Transanctions on Image Processing 14(11), 1687–1700 (2005)CrossRefGoogle Scholar
  4. 4.
    Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)Google Scholar
  5. 5.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  6. 6.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  7. 7.
    Lin, J.-C.: Universal Principal Axes: An Easy-to-Construct Tool Useful in Defining Shape Orientations for Almost Every Kind of Shape. Patt. Rec. 26, 485–493 (1993)CrossRefGoogle Scholar
  8. 8.
    Lin, J.-C.: The Family of Universal Axes. Patt. Rec. 29, 477–485 (1996)CrossRefGoogle Scholar
  9. 9.
    Martin, R.R., Stephenson, P.C.: Putting Objects into Boxes. Computer Aided Design 20, 506–514 (1988)CrossRefGoogle Scholar
  10. 10.
    Shiv Naga Prasad, V., Yegnanarayana, B.: Finding Axes of Symmetry from Potential Fields. IEEE Trans. Image Processing 13(12), 1556–1559 (2004)Google Scholar
  11. 11.
    Rosin, P.L.: Techniques for Assessing Polygonal Approximations of Curves. IEEE Trans. PAMI 19(6), 659–666 (1997)Google Scholar
  12. 12.
    Shen, D., Ip, H.H.S.: Generalized Affine Invariant Normalization. IEEE Trans. PAMI 19(5), 431–440 (1997)Google Scholar
  13. 13.
    Shen, D., Ip, H.H.S., Cheung, K.K.T., Teoh, E.K.: Symmetry Detection by Generalized Complex (GC) Moments: A Close-Form Solution. IEEE Trans. PAMI 21(5), 466–476 (1999)Google Scholar
  14. 14.
    Tsai, W.H., Chou, S.L.: Detection of Generalized Principal Axes in Rotationally Symmetric Shapes. Pattern Recognition 24, 95–104 (1991)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Žunić, J., Kopanja, L., Fieldsend, J.E.: Notes on Shape Orientation where the Standard Method Does not Work. Pattern Recognition 39(5), 856–865 (2005)Google Scholar
  16. 16.
    Žunić, J., Rosin, P.L., Kopanja, L.: On the Orientability of Shapes. IEEE Transactions on Image Processing 15(11), 3478–3487 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joviša Žunić
    • 1
  1. 1.Computer Science DepartmentExeter UniversityExeterU.K.

Personalised recommendations