Forest Search: A Paradigm for Faster Exploration of Scale-Free Networks

  • Yuichi Kurumida
  • Hirotaka Ono
  • Kunihiko Sadakane
  • Masafumi Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4330)


Scale-free networks naturally model wide area networks like the WWW. We consider the problem of fast exploration of huge scale-free networks using small memory space. Although there are many search algorithms for exploring an unknown graph, they require much space or time. For example, the depth first search requires some memory for all the nodes in the worst case, and the average number of steps in the random walk is O(n 3), where n is the size of the graph. Under assumptions reflecting WWW applications, we propose a new exploration paradigm called forest search particularly designed for scale-free networks, and theoretically evaluate its space complexity. We also demonstrate its superiority over random walk based search algorithms by conducting simulations.


Random Walk Target Node Preferential Attachment Additional Rule Span Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Reviews Of Modern Physics 74, 47–97 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Amaral, L.A.N., Scala, A., Barthélé, M., Stanley, H.E.: Classes of small-world networks. Proceeding of The National Academy of Sciences 97, 11149–11152 (2000)CrossRefGoogle Scholar
  3. 3.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65, 21–46 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999)CrossRefGoogle Scholar
  5. 5.
    Bollobás, B., Riordan, O.: The degree sequence of a scale-free random graph process. Random Structure and Algorithms 18, 279–290 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bollobas, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24, 5–34 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brightwell, G., Winkler, P.: Maximum Hitting Time for Random Walks on Graphs. J. Random Structures and Algorithms 3, 263–276 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ebel, H., Mielsch, L.-I., Bornholdt, S.: Scale-free topology of e-mail networks. Pysical Review E 66, 1–4 (2002)Google Scholar
  9. 9.
    Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetGoogle Scholar
  10. 10.
    Feige, U.: A tight upper bound on the cover time for random walks on graphs. J. Random Structures and Algorithms 6, 51–54 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Flocchini, P., Mans, B., Santoro, N.: On the Impact of Sense of Direction on Message Complexity. Inf. Process. Lett. 63(1), 23–31 (1997)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fraigniaud, P., Gavoille, C., Mans, B.: Interval routing schemes allow broadcasting with linear message-complexity. Distributed Computing 14(4), 217–229 (2001)CrossRefGoogle Scholar
  13. 13.
    Ikeda, S., Kubo, I., Yamashita, M.: Reducing the Hitting and the Cover Times of Random Walks on Finite Graphs by Local Topological Information. In: Proceedings of The 2003 International Conference on VLSI, pp. 203–207 (2003)Google Scholar
  14. 14.
    Kurumida, Y., Ogata, T., Ono, H., Sadakane, K., Yamashita, M.: A Generic Search Strategy for Large Scale Real World Networks. In: Proc. of the 1st International Conference on Scalable Information Systems. ACM, Digital Library (2006)Google Scholar
  15. 15.
    Panaite, P., Pelc, A.: Impact of topographic information on graph exploration efficiency. Networks 36(2), 96–103 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuichi Kurumida
    • 1
  • Hirotaka Ono
    • 1
  • Kunihiko Sadakane
    • 1
  • Masafumi Yamashita
    • 1
  1. 1.Department of Computer Science and Communication EngineeringKyushu UniversityJapan

Personalised recommendations