Advertisement

Extended Ontological Model for Distance Learning Purpose

  • Emma Kushtina
  • Przemysław Różewski
  • Oleg Zaikin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4333)

Abstract

In the article authors propose an extended ontological model for distance learning, concerning pedagogical and cognitive requirements of the teaching/learning process as well as environmental requirements represented by SCORM standard. The main characteristic of the dedicated ontological model is reusability, which manifests itself in the possibility of adapting the knowledge model to different contexts and for different users by simply enabling knowledge sharing and knowledge management. Additionally, the article contains case studies (SCORM’s course) presenting the proposed model in action.

Keywords

ontological model knowledge management distance learning SCORM learning object 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ausubel, D.P., Novak, J.D., Hanesian, H.: Educational Psychology: A Cognitive View, 2nd edn. Rinehart and Winston, New York (1978)Google Scholar
  2. 2.
    Bologna Working Group on Qualifications Frameworks, A Framework for Qualifications of the European Higher Education Area, report (2005), Downloadable from website: http://www.bologna-bergen2005.no/
  3. 3.
    Burgess, J.R.D., Russell, J.E.A.: The effectiveness of distance learning initiatives in organizations. Journal of Vocational Behavior 63(2), 289–303 (2003)CrossRefGoogle Scholar
  4. 4.
    Chandrasekaran, B., Josephson, J., Benjamins, V.: What Are Ontologies, and Why Do We Need Them? IEEE Intelligent Systems 14(1), 20–26 (1999)CrossRefGoogle Scholar
  5. 5.
    de Jong, T.: Scientific Discovery Learning with Computer Simulations of Conceptual Domains. Review of Educational Research (68), 179–201 (1998)Google Scholar
  6. 6.
    Doerr, M.: Semantic Problems of Thesaurus Mapping. Journal of Digital Information 1(8), Article No. 52 (2001)Google Scholar
  7. 7.
    Downes, S.: Learning objects: Resource for Distance Education Worldwide. International Review of Research in Open and Distance Learning 2(1) (2001)Google Scholar
  8. 8.
    Fensel, D.: Ontologies: Silver Bullet for knowledge Management and Electronic Commerce. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  9. 9.
    Fernandez, M., Gómez-Perez, A., Pazos, J., Pazos, A.: Building a chemical ontology using methontology and the ontology design environment. IEEE Intelligent Systems and their Applications 14(1), 37–45 (1999)CrossRefGoogle Scholar
  10. 10.
    Goldstein, R.C., Storey, V.C.: Data abstractions: Why and how? Data & Knowledge Engineering 29(3), 293–311 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering: with examples from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Greenberg, L.: LMS and LSMS: What’s the Difference? Learning Circuits - ASTD’s Online Magazine All About E-Learning 2002 (2002), Downloadable from website: http://www.learningcircuits.com/2002/dec2002/Greenberg.htm
  13. 13.
    Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Hameed, A., Sleeman, D., Preece, A.: Detecting Mismatches Among Experts’ Ontologies Acquired through Knowledge Elicitation. In: Research and Development in Intelligent Systems XVIII, pp. 9–22. Springer, Heidelberg (2001)Google Scholar
  15. 15.
    Kushtina, E., Zaikine, O., Różewski, P., Tadeusiewicz, T.: Conceptual model of theoretical knowledge representation for distance learning. In: Proceedings of the 9th Conference of European University Information Systems (EUNIS 2003), Amsterdam, pp. 239–243 (2003)Google Scholar
  16. 16.
    Kushtina, E., Zaikin, O., Różewski, P.: On the knowledge repository design and management in E-Learning. In: Lu, J., Ruan, D., Zhang, G. (eds.) E-Service Intelligence: Methodologies, Technologies and applications, Studies in Computational Intelligence, vol. 37, pp. 497–517. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Lahti, R.K.: Identifying and integrating individual level and organizational level core competencies. Journal of Business and Psychology 14(1), 59–75 (1999)CrossRefGoogle Scholar
  18. 18.
    Lin, Y.T., Tseng, S.S., Chi-Feng, T.: Design and implementation of new object-oriented rule base management system. Expert Systems with Applications 25(3), 279–481 (2003)CrossRefGoogle Scholar
  19. 19.
    Maedche, A., Staab, S.: Discovering Conceptual Relations from Text, In Technical Report 399, Institute AIFB, Institute AIFB, Karlsruhe University, pp. 321–325 (2000)Google Scholar
  20. 20.
    Novak, J.D.: Learning, Creating, and Using Knowledge: Concept Maps As Facilitative Tools in Schools and Corporations. Lawrence Erlbaum Associates, Mahwah (1998)Google Scholar
  21. 21.
    Różewski, P.: Method of information system design for knowledge representation and transmission in distance learning, unpublished doctoral thesis. Szczecin University of Technology. Faculty of Computer Science and Information Systems (in Polish) (2004)Google Scholar
  22. 22.
    Sampson, D.G., Lytras, M.D., Wagner, G., Diaz, P. (ed.): Special Issue on Ontologies and the Semantic Web for E-learning. Journal of Educational Technology & Society 7(4) (2004)Google Scholar
  23. 23.
    SCORM - Sharable Content Object Reference Model. Advanced Distributed Learning Initiative, Downloadable from website: http://www.adlnet.org
  24. 24.
    Sun, Y.: Methods for automated concept mapping between medical databases. Journal of Biomedical Informatics 37, 162–178 (2004)CrossRefGoogle Scholar
  25. 25.
    Taboada, M., Des, J., Mira, J., Marín, R.: Development of diagnosis systems in medicine with reusable knowledge components. IEEE Intelligent Systems 16(6), 68–73 (2001)CrossRefGoogle Scholar
  26. 26.
    Taboada, M., Martínez, D., Mira, J.: Experiences in reusing knowledge sources using Protégé and Prompt. An application in a medical domain. International Journal of Human-Computer Studies 62, 597–618 (2005)CrossRefGoogle Scholar
  27. 27.
    Tsichritzis, D.C., Lochovsky, F.H.: Data models. Prentice-Hall, Englewood Cliffs (1982)Google Scholar
  28. 28.
    Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M., Shave, M.J.R.: An Analysis of Ontology Mismatches; Heterogeneity versus Interoperability. In: Working notes of the Spring Symposium on Ontological Engineering (AAAI 1997), Stanford University, pp. 164–172 (1997)Google Scholar
  29. 29.
    Wong, H.K.T., Mylopoulos, J.: Two Views of Data Semantics A Survey of Data Models in Artificial Intelligence and Database Management. INFOR 15(3), 344–382 (1977)Google Scholar
  30. 30.
    Wu, C.-H.: Building knowledge structures for online instructional/learning systems via knowledge elements interrelations. Expert Systems with Applications 26(4), 311–319 (2004)CrossRefGoogle Scholar
  31. 31.
    Zaikin, O., Kushtina, E., Różewski, P.: Model and algorithm of the conceptual scheme formation for knowledge domain in distance learning. European Journal of Operational Research 175(3), 1379–1399 (2006)zbMATHCrossRefGoogle Scholar
  32. 32.
    Ziga, T.: Construction informatics: Definition and ontology. Advanced Engineering Informatics 20, 187–199 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emma Kushtina
    • 1
  • Przemysław Różewski
    • 1
  • Oleg Zaikin
    • 1
  1. 1.Faculty of Computer Science and Information TechnologySzczecin University of TechnologySzczecinPoland

Personalised recommendations