Wardrop Equilibria and Price of Stability for Bottleneck Games with Splittable Traffic

  • Vladimir Mazalov
  • Burkhard Monien
  • Florian Schoppmann
  • Karsten Tiemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)

Abstract

We look at the scenario of having to route a continuous rate of traffic from a source node to a sink node in a network, where the objective is to maximize throughput. This is of interest, e.g., for providers of streaming content in communication networks. The overall path latency, which was relevant in other non-cooperative network routing games such as the classic Wardrop model, is of lesser concern here.

To that end, we define bottleneck games with splittable traffic where the throughput on a path is inversely proportional to the maximum latency of an edge on that very path—the bottleneck latency. Therefore, we define a Wardrop equilibrium as a traffic distribution where this bottleneck latency is at minimum on all used paths. As a measure for the overall system well-being—called social cost—we take the weighted sum of the bottleneck latencies of all paths.

Our main findings are as follows: First, we prove social cost of Wardrop equilibria on series parallel graphs to be unique. Even more, for any graph whose subgraph induced by all simple start-destination paths is not series parallel, there exist games having equilibria with different social cost. For the price of stability, we give an independence result with regard to the network topology. Finally, our main result is giving a new exact price of stability for Wardrop/bottleneck games on parallel links with M/M/1 latency functions. This result is at the same time the exact price of stability for bottleneck games on general graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Roughgarden, T., Tardos, É., Wexler, T.: The Price of Stability for Network Design with Fair Cost Allocation. In: Proc. of the 45th Annual Symposium on Foundations of Computer Science (FOCS 2004) (2004)Google Scholar
  3. 3.
    Banner, R., Orda, A.: Bottleneck Routing Games in Communication Networks. In: Proc. of the 25th Conference on Computer Communications (INFOCOM 2006) (to appear, 2006)Google Scholar
  4. 4.
    Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)Google Scholar
  5. 5.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1987)Google Scholar
  6. 6.
    Busch, C., Magdon-Ismail, M.: Atomic Routing Games on Maximum Congestion. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 79–91. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Caragiannis, I., Galdi, C., Kaklamanis, C.: Network Load Games. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 809–818. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Cole, R., Dodis, Y., Roughgarden, T.: Bottleneck Links, Variable Demand, and the Tragedy of the Commons. In: Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 668–677 (2006)Google Scholar
  9. 9.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Computational Complexity, Fairness, and the Price of Anarchy of the Maximum Latency Problem. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 59–73. Springer, Heidelberg (2004); An extended version will appear in Operations ResearchCrossRefGoogle Scholar
  10. 10.
    Czumaj, A., Krysta, P., Vöcking, B.: Selfish Traffic Allocation for Server Farms. In: Proc. of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pp. 287–296 (2002)Google Scholar
  11. 11.
    Gairing, M., Lücking, T., Monien, B., Tiemann, K.: Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium Conjecture. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 51–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kleinrock, L.: Queueing Systems, vol. 1: Theory. Wiley-Interscience, Chichester (1975)Google Scholar
  13. 13.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Capacity Allocation Under Noncooperative Routing. IEEE Transactions on Automatic Control 42(3), 309–325 (1997)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet Routing and Job-Scheduling in O(Congestion + Dilation) steps. Combinatroica 14(2), 167–186 (1994)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Orda, A., Rom, R., Shimkin, N.: Competitive Routing in Multiuser Communication Networks. IEEE/ACM Transactions on Networking 1(5), 510–521 (1993)CrossRefGoogle Scholar
  17. 17.
    Rath, K.P.: A direct proof of the existence of pure strategy equilibria in games with a continuum of players. Economic Theory 2(3), 427–433 (1992)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Robertazzi, T.G.: Computer Networks and Systems: Queuing Theory and Performance Evaluation. Springer, Heidelberg (2000)Google Scholar
  19. 19.
    Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. Journal of Computer and System Sciences 67(2), 341–364 (2003)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Roughgarden, T.: The Maximum Latency of Selfish Routing. In: Proc. of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 980–981 (2004)Google Scholar
  21. 21.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)Google Scholar
  22. 22.
    Roughgarden, T., Tardos, É.: How Bad Is Selfish Routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Schmeidler, D.: Equilibrium points of nonatomic games. Journal of Statistical Physics 7(4), 295–300 (1973)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Schwarz, M.: Telecommunication Networks: Protocols, Modeling and Analysis. Addison-Wesley, Reading (1987)Google Scholar
  25. 25.
    Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research. In: Proc. of the Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vladimir Mazalov
    • 1
  • Burkhard Monien
    • 2
  • Florian Schoppmann
    • 2
  • Karsten Tiemann
    • 2
  1. 1.Institute of Applied Mathematical Research, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia
  2. 2.Faculty of Computer Science, Electrical Engineering and MathematicsUniversity of PaderbornPaderbornGermany

Personalised recommendations