Sparse Games Are Hard

  • Xi Chen
  • Xiaotie Deng
  • Shang-Hua Teng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4286)


A two-player game is sparse if most of its payoff entries are zeros. We show that the problem of computing a Nash equilibrium remains PPAD-hard to approximate in fully polynomial time for sparse games. On the algorithmic side, we give a simple and polynomial-time algorithm for finding exact Nash equilibria in a class of sparse win-lose games.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. In: STOC 2006 (2006)Google Scholar
  2. 2.
    Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a nash equilibrium. In: STOC 2006 (2006)Google Scholar
  3. 3.
    Papadimitriou, C.: On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences, 498–532 (1994)Google Scholar
  4. 4.
    Chen, X., Deng, X.: 3-nash is ppad-complete. In: ECCC, TR05-134 (2005)Google Scholar
  5. 5.
    Daskalakis, C., Papadimitriou, C.: Three-player games are hard. In: ECCC, TR05-139 (2005)Google Scholar
  6. 6.
    Chen, X., Deng, X.: Settling the complexity of two-player nash-equilibrium. In: FOCS 2006 (2006)Google Scholar
  7. 7.
    Chen, X., Deng, X., Teng, S.H.: Computing nash equilibria: Approximation and smoothed complexity. In: FOCS 2006 (2006)Google Scholar
  8. 8.
    Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: ACM EC 2003, pp. 36–41 (2003)Google Scholar
  9. 9.
    Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. J. ACM 51, 385–463 (2004)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Barany, I., Vempala, S., Vetta, A.: Nash equilibria in random games. In: FOCS 2005 (2005)Google Scholar
  11. 11.
    Chen, X., Teng, S.H., Valiant, P.A.: The approximation complexity of win-lose games. Tsinghua-BU-MIT (manuscript, 2006)Google Scholar
  12. 12.
    Nash, J.: Equilibrium point in n-person games. Proceedings of the National Academy of the USA 36, 48–49 (1950)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of nash equilibria for very sparse win-lose bimatrix games. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 232–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xi Chen
    • 1
  • Xiaotie Deng
    • 2
  • Shang-Hua Teng
    • 3
  1. 1.Department of Computer ScienceTsinghua UniversityBeijing
  2. 2.Department of Computer ScienceCity University of Hong KongHong Kong
  3. 3.Department of Computer ScienceBoston UniversityBoston

Personalised recommendations