On Continuous Timed Automata with Input-Determined Guards

  • Fabrice Chevalier
  • Deepak D’Souza
  • Pavithra Prabhakar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4337)


We consider a general class of timed automata parameterized by a set of “input-determined” operators, in a continuous time setting. We show that for any such set of operators, we have a monadic second order logic characterization of the class of timed languages accepted by the corresponding class of automata. Further, we consider natural timed temporal logics based on these operators, and show that they are expressively equivalent to the first-order fragment of the corresponding MSO logics. As a corollary of these general results we obtain an expressive completeness result for the continuous version of MTL.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43(1), 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Raskin, J.F., Schobbens, P.Y.: State Clock Logic: A Decidable Real-Time Logic. In: HART, pp. 33–47 (1997)Google Scholar
  4. 4.
    D’Souza, D., Thiagarajan, P.S.: Product Interval Automata: A Subclass of Timed Automata. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 60–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    D’Souza, D., Raj Mohan, M.: Eventual Timed Automata. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 322–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 68–83. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  8. 8.
    Ouaknine, J., Worrel, J.: On the Decidability of Metric Temporal Logic. In: LICS, pp. 188–197. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  9. 9.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators. Technical Report IISc-CSA-TR-2006-5 Indian Institute of Science, Bangalore 560012, India (May 2006), URL:
  11. 11.
    Henzinger, T.A., Raskin, J.F., Schobbens, P.Y.: The Regular Real-Time Languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Rabinovich, A.M.: Finite variability interpretation of monadic logic of order. Theor. Comput. Sci. 275(1-2), 111–125 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California (1968)Google Scholar
  14. 14.
    Raskin, J.F.: Logics, Automata and Classical Theories for Deciding Real-Time. PhD thesis, FUNDP, Belgium (1999)Google Scholar
  15. 15.
    Chevalier, F., D’Souza, D., Prabhakar, P.: On continuous timed automata with input-determined guards. Technical Report IISc-CSA-TR-2006-7 Indian Institute of Science, Bangalore 560012, India (June 2006), URL:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fabrice Chevalier
    • 1
  • Deepak D’Souza
    • 2
  • Pavithra Prabhakar
    • 2
  1. 1.LSV, ENS de CachanCachan CedexFrance
  2. 2.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations