Abstract

This paper presents a construction for runtime monitors that check real-time properties expressed in timed LTL (TLTL). Due to D’Souza’s results, TLTL can be considered a natural extension of LTL towards real-time. Moreover, a typical obstacle in runtime verification is solved both for untimed and timed formulae, in that standard models of linear temporal logic are infinite traces, whereas in runtime verification only finite system behaviours are at hand. Therefore, a 3-valued semantics (true, false, inconclusive) for LTL and TLTL on finite traces is defined that resembles the infinite trace semantics in a suitable and intuitive manner. Then, the paper describes how to construct, given a (T)LTL formula, a deterministic monitor with three output symbols that reads a finite trace and yields its according 3-valued (T)LTL semantics. Notably, the monitor rejects a trace as early as possible, in that any minimal bad prefix results in false as a return value.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A., Sethi, R., Ullman, J.: Compilers: Principles and Techniques and Tools. Addison-Wesley, Reading (1986)Google Scholar
  2. 2.
    Alur, R.: Timed automata. In: NATO-ASI 1998 Summer School on Verification of Digital and Hybrid Systems (1998)Google Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: A determinizable class of timed automata. TCS 211(1-2), 253–273 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bauer, A., Leucker, M., Schallhart, C.: Model-based runtime analysis of distributed reactive systems. In: ASWEC 2006. IEEE, Los Alamitos (2006)Google Scholar
  6. 6.
    Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 219–233. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)MATHGoogle Scholar
  8. 8.
    Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking infinite state-space systems with fine-grained abstractions using SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, p. 16. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Colin, S., Mariani, L.: Run-Time Verification. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    D’Amorim, M., Roşu, G.: Efficient monitoring of omega-languages. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    D’Souza, D.: A logical characterisation of event clock automata. Int. Journ. Found. Comp. Sci. 14(4), 625–639 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Giannakopoulou, D., Havelund, K.: Automata-Based Verification of Temporal Properties on Running Programs. In: ASE 2001. IEEE, Los Alamitos (2001)Google Scholar
  14. 14.
    Håkansson, J., Jonsson, B., Lundqvist, O.: Generating online test oracles from temporal logic specifications. STTT 4(4), 456–471 (2003)Google Scholar
  15. 15.
    Havelund, K., Rosu, G.: Monitoring Java Programs with Java PathExplorer. ENTCS 55(2) (2001)Google Scholar
  16. 16.
    Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: ASE 2001. IEEE, Los Alamitos (2001)Google Scholar
  17. 17.
    Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 342. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Kupferman, O., Vardi, M.Y.: Model checking of safety properties. FMSD 19(3), 291–314 (2001)MATHMathSciNetGoogle Scholar
  19. 19.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on the Foundations of Computer Science (FOCS 1977). IEEE, Los Alamitos (1977)Google Scholar
  21. 21.
    Raskin, J.-F., Schobbens, P.-Y.: State clock logic: A decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Raskin, J.-F., Schobbens, P.-Y.: The logic of event clocks—decidability, complexity and expressiveness. JALC 4(3), 247–286 (1999)MATHMathSciNetGoogle Scholar
  23. 23.
    Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. In: Fifth Workshop on Runtime Verification (RV 2005). ENTCS (to appear, 2005)Google Scholar
  24. 24.
    Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, p. 205. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimulations. FMSD 18(1), 25–68 (2001)MATHGoogle Scholar
  26. 26.
    Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. LNCS, vol. 1043. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Bauer
    • 1
  • Martin Leucker
    • 1
  • Christian Schallhart
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGermany

Personalised recommendations