Monte-Carlo Localization for Mobile Wireless Sensor Networks

  • Aline Baggio
  • Koen Langendoen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4325)


Localization is crucial to many applications in wireless sensor networks. This article presents a range-free anchor-based localization algorithm for mobile wireless sensor networks that builds upon the Monte Carlo Localization algorithm. We improve the localization accuracy and efficiency by making better use of the information a sensor node gathers and by drawing the necessary location samples faster. Namely, we constrain the area from which samples are drawn by building a box that covers the region where anchors’ radio ranges overlap. Simulation results show that localization accuracy is improved by a minimum of 4% and by a maximum of 73%, on average 30%, for varying node speeds when considering nodes with knowledge of at least three anchors. The coverage is also strongly affected by speed and its improvement ranges from 3% to 55%, on average 22%. Finally, the processing time is reduced by 93% for a similar localization accuracy.


Distributed localization algorithms wireless sensor net- works mobility Monte Carlo Localization simulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baggio, A.: Monte-Carlo localization for mobile wireless sensor networks. Technical Report PDS-2006-004, Delft University of Technology (June 2006)Google Scholar
  2. 2.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA 1999), Detroit, Michigan, USA (May 1999)Google Scholar
  3. 3.
    Dil, B., Dulman, S., Havinga, P.: Range-based localization in mobile sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 164–179. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, Heidelberg (2001)MATHGoogle Scholar
  5. 5.
    Dutta, P., Bergbreiter, S.: Mobiloc: Mobility enhanced localization (December 2003)Google Scholar
  6. 6.
    Fall, K.: A delay-tolerant network architecture for challenged Internets. In: ACM SIGCOMM, Karlsruhe, Germany, pp. 27–34 (August 2003)Google Scholar
  7. 7.
    Galstyan, A., Krishnamachari, B., Lerman, K., Pattem, S.: Distributed online localization in sensor networks using a moving target. In: Third international symposium on Information processing in sensor networks (IPSN), Berkeley, California, USA, pp. 61–70 (April 2004)Google Scholar
  8. 8.
    Handschin, J.E.: Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica 4(6), 555–563 (1970)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Hu, L., Evans, D.: Localization for mobile sensor networks. In: Tenth International Conference on Mobile Computing and Networking (MobiCom 2004), Philadelphia, Pennsylvania, USA, pp. 45–57 (September 2004)Google Scholar
  10. 10.
    Bulusu, D.E.N., Heidenmann, J.: GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine 7(5), 28–34 (2000)CrossRefGoogle Scholar
  11. 11.
    Pathirana, P.N., Bulusu, N., Savkin, A.V., Jha, S.K.: Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing 4(3), 285–296 (2005)CrossRefGoogle Scholar
  12. 12.
    Peng, R., Sichitiu, M.L.: Localization of wireless sensor networks with a mobile beacon. In: First IEEE Conference on Mobile Ad-hoc and Sensor Systems (MASS 2004), Fort Lauderdale, FL, USA (October 2004)Google Scholar
  13. 13.
    Priyantha, N.B., Balakrishnan, H., Demaine, E.D., Teller, S.: Mobile-assisted localization in wireless sensor networks. In: INFOCOM 2005, Miami, FL, USA (March 2005)Google Scholar
  14. 14.
    Ssu, K.-F., Ou, C.-H., Jiau, H.C.: Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 1187–1197 (May 2005)Google Scholar
  15. 15.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)MATHCrossRefGoogle Scholar
  16. 16.
    Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: IEEE INFOCOM, San Franciso, CA, USA (March–April 2003)Google Scholar
  17. 17.
    Yoon, J., Liu, M., Noble, B.: Sound mobility models. In: ACM MobiCom, San Diego, CA, USA, pp. 205–216 (September 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aline Baggio
    • 1
  • Koen Langendoen
    • 1
  1. 1.Delft University of TechnologyThe Netherlands

Personalised recommendations