A Distributed Simulation-Based Computational Intelligence Algorithm for Nanoscale Semiconductor Device Inverse Problem

  • Yiming Li
  • Cheng-Kai Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4331)


In this paper, a distributed simulation-based computational intelligence algorithm for inverse problem of nanoscale semiconductor device is presented. This approach features a simulation-based optimization strategy, and mainly integrates the semiconductor process simulation, semiconductor device simulation, evolutionary strategy, and empirical knowledge on a distributed computing environment. For a set of given target current-voltage (I-V) curves of metal-oxide-semiconductor field effect transistors (MOSFETs) devices, the developed prototype executes evolutionary tasks to solve an inverse doping profile problem, and therefore optimize fabrication recipes. In the evolutionary loop, the established management server allocates the jobs of process simulation and device simulation on a PC-based Linux cluster with message passing interface (MPI) libraries. Good benchmark results including the speed-up, the load balancing, and the parallel efficiency are presented. Computed results, compared with the realistic measured data of 65 nm n-type MOSFET, show the accuracy and robustness of the method.


Message Passing Interface Field Effect Transistor Device Characteristic Empirical Knowledge Hybrid Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Y., Chou, H.-M., Lee, J.-W.: Investigation of Electrical Characteristics on Surround-ing-Gate and Omega-Shaped-Gate Nanowire FinFETs. IEEE Trans. Nanotech. 4, 510–516 (2005)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Chou, H.-M.: A Comparative Study of Electrical Characteristic on Sub-10 nm Dou-ble Gate MOSFETs. IEEE Trans. Nanotech. 4, 645–647 (2005)CrossRefGoogle Scholar
  3. 3.
    Li, Y., Yu, S.-M.: A Two-Dimensional Quantum Transport Simulation of Nanoscale Dou-ble-Gate MOSFETs using Parallel Adaptive Technique. IEICE Trans. Inf. Syst. E87-D, 1751–1758 (2004)Google Scholar
  4. 4.
    Li, Y.: A Parallel Monotone Iterative Method for the Numerical Solution of Multidimen-sional Semiconductor Poisson Equation. Comput. Phys. Commun. 153, 359–372 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Li, Y., Sze, S.M., Chao, T.-S.: A Practical Implementation of Parallel Dynamic Load Balanc-ing for Adaptive Computing in VLSI Device Simulation. Eng. Comput. 18, 124–137 (2002)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Liu, J.-L., Chao, T.-S., Sze, S.M.: A new parallel adaptive finite volume method for the numerical simulation of semiconductor devices. Comput. Phys. Commun. 142, 285–289 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Binder, T., Heitzinger, C., Selberherr, S.: A Study on Global and Local Optimization Techniques for TCAD Analysis Tasks. IEEE Trans. CAD. 23, 814–822 (2004)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Yu, S.-M., Chen, C.-K.: A Simulation-Based Evolutionary Technique for Inverse Problems of Sub-65nm CMOS Devices. In: Kosina, H., Selberherr, S. (eds.) Book of Abstracts of the 11th International Workshop on Computational Electronics. Technische Uni-versitat Wien (TU Wien), Institute for Microelectronics, Vienna, Austria, pp. 69–70 (2006)Google Scholar
  9. 9.
    Dupre, L., Slodicka, M.: Inverse problem for magnetic sensors based on a Preisach formalism. IEEE Trans. Mag. 40, 1120–1123 (2004)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Yu, S.-M.: Comparison of Random Dopant-Induced Threshold Voltage Fluctua-tions in Nanoscale Single-, Double-, and Surrounding-Gate Field Effect Transistors. Jpn. J. Appl. Phys. 45, 6860–6865 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Li, Y., Yu, S.-M.: Study of Threshold Voltage Fluctuations of Nanoscale Double Gate Metal-Oxide-Semiconductor Field Effect Transistors Using Quantum Correction Simulation. J. Comput. Elec. 5, 125–129 (2006)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Chou, Y.-S.: A Novel Statistical Methodology for Sub-100 nm MOSFET Fabrication Optimization and Sensitivity Analysis. In: Extended Abstract of the 2005 Int. Conf. Solid State Devices and Materials, pp. 622–623 (2005)Google Scholar
  13. 13.
    Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Boston (2000)zbMATHGoogle Scholar
  14. 14.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)zbMATHGoogle Scholar
  15. 15.
    Thierauf, G., Cai, J.: Parallel evolution strategy for solving structural optimization. Eng. Struct. 19, 318–324 (1997)CrossRefGoogle Scholar
  16. 16.
    Schoneveld, A., de Ronde, J.F., Sloot, P.M.A.: Task Allocation by Parallel Evolutionary Computing. J. Paral. Distribu. Comput. 47, 91–97 (1997)CrossRefGoogle Scholar
  17. 17.
    Migdalas, A., Toraldo, G., Kumar, V.: Nonlinear optimization and parallel computing. Paral. Comput. 29, 375–391 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Evolutionary computing and optimization: Issues in parallelizing multiobjective evolutionary algorithms for real world applications. In: Proc. ACM Symp. Appl. Computing, pp. 595–602 (2002)Google Scholar
  19. 19.
    Nanda, P.K., Ghose, B., Swain, T.N.: Parallel genetic algorithm based unsupervised scheme for extraction of power frequency signals in the steel industry. IEE Proc.: Vision, Image and Signal Processing 149, 204–210 (2002)CrossRefGoogle Scholar
  20. 20.
    Lee, C.-H., Parl, K.-H., Kim, J.-H.: Hybrid parallel, evolutionary algorithms for con-strained optimization utilizing PC clustering. In: Proc. Congress on Evolutionary Computation, vol. 2, pp. 1436–1441 (2001)Google Scholar
  21. 21.
    Cantú-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and practice. Comput. Meth. Appl. Mech. Eng. 186, 221–238 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    High, K.A., LaRoche, R.D.: Parallel nonlinear optimization techniques for chemical process design problems. Comput. Chemical Eng. 19, 807–825 (1995)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Cho, Y.-Y.: Intelligent BSIM4 Model Parameter Extraction for Sub-100 nm Mosfet Era. Jpn. J. Appl. Phys. 43, 1717–1722 (2004)CrossRefGoogle Scholar
  24. 24.
    Li, Y.: A Hybrid Intelligent Computational Methodology for Semiconductor Device Equivalent Circuit Model Parameter Extraction. In: Anile, A.M., Alì, G., Mascali, G. (eds.) Scientific Computing in Electrical Engineering, pp. 345–350. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yiming Li
    • 1
  • Cheng-Kai Chen
    • 1
  1. 1.Department of Communication EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations