Secure Cryptographic Workflow in the Standard Model

  • M. Barbosa
  • P. Farshim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)

Abstract

Following the work of Al-Riyami et al. we define the notion of key encapsulation mechanism supporting cryptographic workflow (WF-KEM) and prove a KEM-DEM composition theorem which extends the notion of hybrid encryption to cryptographic workflow. We then generically construct a WF-KEM from an identity-based encryption (IBE) scheme and a secret sharing scheme. Chosen ciphertext security is achieved using one-time signatures. Adding a public-key encryption scheme we are able to modify the construction to obtain escrow-freeness. We prove all our constructions secure in the standard model.

Keywords

Cryptographic Workflow Key Encapsulation Secret Sharing Identity-Based Encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Riyami, S.S., Malone-Lee, J., Smart, N.P.: Escrow-Free Encryption Supporting Cryptographic Workflow. Cryptology ePrint Archive, Report 2004/258 (2004)Google Scholar
  2. 2.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless Public-Key Cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Barbosa, M., Farshim, P.: Secure Cryptographic Workflow in the Standard Model. Full Version. Cryptology ePrint Archive, Report 2006/??? (2006)Google Scholar
  4. 4.
    Bellare, M., Boldyreva, A., Staddon, J.: Randomness Re-Use in Multi-Recipient Encryption Schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Benaloh, J., Leichter, J.: Generalized Secret Sharing and Monotone Functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic Constructions of Identity-Based and Certificateless KEMs. Cryptology ePrint Archive, Report 2005/058 (2005)Google Scholar
  7. 7.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM Journal on Computing 32, 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based Encryption. Cryptology ePrint Archive, Report 2004/261 (2004)Google Scholar
  9. 9.
    Bradshaw, R.W., Holt, J.E., Seamons, K.E.: Concealing Complex Policies with Hidden Credentials. In: 11th ACM Conference on Computer and Communications Security (2004)Google Scholar
  10. 10.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. Cryptology ePrint Archive, Report 2003/182 (2003)Google Scholar
  11. 11.
    Chen, L., Cheng, Z.: Security Proof of Sakai-Kasahara’s Identity-Based Encryption Scheme. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 442–459. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Chen, L., Harrison, K.: Multiple Trusted Authorities in Identifier Based Cryptography from Pairings on Elliptic Curves. Technical Report, HPL-2003-48, HP Laboratories (2003)Google Scholar
  13. 13.
    Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of Multiple Trusted Authorities in Pairing Based Cryptosystems. In: Davida, G.I., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Cramer, R., Shoup, V.: A Practical Public-Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Dent, A.W.: A Designer’s Guide to KEMs. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Herranz, J., Hofheinz, D., Kiltz, E.: KEM/DEM: Necessary and Sufficient Conditions for Secure Hybrid Encryption. Cryptology ePrint Archive, Report 2006/265 (2006)Google Scholar
  19. 19.
    Holt, J.E., Bradshaw, R.W., Seamons, K.E., Orman, H.: Hidden Credentials. In: 2nd ACM Workshop on Privacy in the Electronic Society, pp. 1–8 (2003)Google Scholar
  20. 20.
    Kiltz, E.: Chosen-Ciphertext Secure Identity-Based Encryption in the Standard Model with short Ciphertexts. Cryptology ePrint Archive, Report 2006/122 (2006)Google Scholar
  21. 21.
    Krawczyk, H.: Secret Sharing Made Short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994)Google Scholar
  22. 22.
    Nagao, W., Manabe, Y., Okamoto, T.: On the Equivalence of Several Security Notions of Key Encapsulation Mechanism. Cryptology ePrint Archive, Report 2006/268 (2006)Google Scholar
  23. 23.
    Paterson, K.G.: Cryptography from Pairings: A Snapshot of Current Research. Information Security Technical Report 7, 41–54 (2002)CrossRefGoogle Scholar
  24. 24.
    Sakai, R., Kasahara, M.: ID-Based Cryptosystems with Pairing on Elliptic Curve. Cryptology ePrint Archive, Report 2003/054 (2003)Google Scholar
  25. 25.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22, 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  27. 27.
    Smart, N.P.: Access Control Using Pairing Based Cryptography. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 111–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Waters, B.R.: Efficient Identity-Based Encryption Without Random Oracles. Cryptology ePrint Archive, Report 2004/180 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Barbosa
    • 1
  • P. Farshim
    • 2
  1. 1.Departamento de InformáticaUniversidade do MinhoBragaPortugal
  2. 2.Department of Computer ScienceUniversity of BristolBristolUnited Kingdom

Personalised recommendations