Advertisement

Efficient CCA-Secure Public-Key Encryption Schemes from RSA-Related Assumptions

  • Jaimee Brown
  • Juan Manuel González Nieto
  • Colin Boyd
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4329)

Abstract

We build new RSA-based encryption schemes secure against adaptive chosen-ciphertext attack (CCA-secure) without random oracles. To do this, we first define a new general RSA-related assumption, the Oracle RSA-type assumption, and give two specific instances of this assumption. Secondly, we express RSA-based encryption schemes as tag-based encryption schemes (TBE), where the public exponent is the tag. We define selective-tag weak chosen-ciphertext security for the special RSA-based case and call it selective-exponent weak chosen-ciphertext security. RSA-based schemes secure in this sense can be used as a building block for the construction of chosen-ciphertext secure encryption schemes using a previous technique. We build two concrete CCA-secure encryption schemes whose security is based on the two concrete Oracle RSA-type assumptions respectively, and whose efficiency is comparable to the most efficient CCA-secure schemes known.

Keywords

chosen-ciphertext security public key encryption RSA assumptions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Bellare, M., Rogaway, P.: DHIES: An Encryption Scheme Based on the Diffie-Hellman Problem (2001), http://www.cs.ucsd.edu/users/mihir/papers/dhaes.pdf
  2. 2.
    Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption - How to Encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption, Journal submission (2005), http://crypto.stanford.edu/~dabo/papers/ccaibejour.pdf
  7. 7.
    Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Carter, J.L., Wegman, M.N.: Universal Classes of Hash Functions. JCSS 18(2), 143–154 (1979)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Paillier’s cryptosystem revisited. In: CCS, pp. 206–214. ACM Press, New York (2001)Google Scholar
  11. 11.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC. ACM Press, New York (1991)Google Scholar
  15. 15.
    Elkind, E., Sahai, A.: A Unified Methodology For Constructing Public-Key Encryption Schemes Secure Against Adaptive Chosen-Ciphertext Attack. Cryptology ePrint Archive, Report 2002/042 (2002), http://eprint.iacr.org/
  16. 16.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random Generation from One-Way Functions. In: STOC, pp. 12–24. ACM Press, New York (1989)Google Scholar
  17. 17.
    Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to Non-malleability: Definitions, Constructions, and Applications (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 171–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: STOC, pp. 33–43 (1989)Google Scholar
  21. 21.
    Naor, M., Yung, M.: Public-Key Cryptosystems Provably Secure Against Chosen Ciphertext Attacks. In: STOC, pp. 427–437. ACM Press, New York (1990)Google Scholar
  22. 22.
    Nevelsteen, W., Preneel, B.: Software Performance of Universal Hash Functions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 24–41. Springer, Heidelberg (1999)Google Scholar
  23. 23.
    Pointcheval, D.: New Public Key Cryptosystems Based on the Dependent-RSA Problems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 239–254. Springer, Heidelberg (1999)Google Scholar
  24. 24.
    Scott, M.: Faster Pairings using an Elliptic Curve with an Efficient Endomorphism. Cryptology ePrint Archive, Report 2005/252 (2005), http://eprint.iacr.org/
  25. 25.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005), Available at: http://shoup.net/ntb/ zbMATHGoogle Scholar
  26. 26.
    Stinson, D.R.: Universal Hashing and Authentication Codes. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jaimee Brown
    • 1
  • Juan Manuel González Nieto
    • 1
  • Colin Boyd
    • 1
  1. 1.Information Security InstituteQueensland University of TechnologyAustralia

Personalised recommendations