User Mediated Hypermedia Presentation Generation on the Semantic Web Framework

  • Jayan C Kurian
  • Payam M. Barnaghi
  • Michael Ian Hartley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4282)


The art of authoring digital multimedia involves collecting and organizing different sorts of media items and transforming them into a coherent presentation. Existing authoring tools for multimedia presentations provide functional support for the authoring process that requires domain knowledge or presentation skills. The authoring process can be enhanced if the authors are supported with decision making, material collection, selection, and presentation composition in generating web presentations. We apply the semantic web technology to generate hypermedia presentations based on media resources retrieved from the web. A discourse model represents the discussion of a subject with a theme supported by a discourse structure that represents the arrangement of contents in a discourse. In this paper we define a discourse model (i.e. Neural Network Architecture) that specifies the knowledge of composing various discourse entities (e.g. Feed-Forward Neural Networks) which enables the building of discourse structures for various themes (e.g. Lecture Notes).


Multimedia Applications Hypermedia Presentation Generation Semantic Web 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Microsoft PowerPoint, the Microsoft Office presentation program,
  2. 2.
    Rutledge, L., Alberink, M., Brussee, R., Pokraev, S., Van Dieten, W., Veenstra, M.: Finding the Story —Broader Applicability of Semantics and Discourse for Hypermedia Generation. In: Proceedings of the 14th ACM Conference on Hypertext and Hypermedia, pp. 67–76 (2003)Google Scholar
  3. 3.
    Falkovych, K., Bocconi, S.: Creating a Semantic-based Discourse Model for Hypermedia Presentations (Un)discovered Problems. In: Workshop on Narrative, Musical, Cinematic and Gaming Hyperstructure (2005)Google Scholar
  4. 4.
    The Resource Description Framework (RDF),
  5. 5.
    Rijksmuseum Amsterdam, a museum of Dutch art and history,
  6. 6.
    Little, S., Geurts, J., Hunter, J.: Dynamic Generation of Intelligent Multimedia Presentations through Semantic Inferencing. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 158–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dublin Core Metadata Element Set Version1.1 (DC), Reference Description, Dublin Core Metadata Initiative (1999),
  8. 8.
    Synchronized Multimedia Integration Language (SMIL),
  9. 9.
    Kim, S., Alani, H., Hall, W., Lewis, P.H., Millard, D.E., Shadbolt, N., Weal, M.J.: Artequakt: Generating Tailored Biographies with Automatically Annotated Fragments from the Web. In: Workshop on Semantic Authoring, Annotation & Knowledge Markup, 15 European Conf. on Artificial Intelligence (ECAI), pp. 1–6 (2002)Google Scholar
  10. 10.
    Geurts, J., Bocconi, S., van Ossenbruggen, J., Hardman, L.: Towards Ontology-driven Discourse: From Semantic Graphs to Multimedia Presentations. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 597–612. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Protégé, an ontology editor and knowledge-base framework,
  12. 12.
    Resource Description Framework (RDF) Schema,
  13. 13.
    Barnaghi, P.M., Kareem, S.A.: Ontology-Based Multimedia Presentation Generation. In: IEEE TENCON Conference (2005)Google Scholar
  14. 14.
  15. 15.
    Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7: Multimedia Content Description Interface. John Wiley, Chichester (2002)Google Scholar
  16. 16.
    Jena, a semantic web framework for Java,
  17. 17.
    Larose, T.D.: Discovering Knowledge in Data: An Introduction to Data Mining. Wiley-Interscience, Chichester (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Chiu, P., Wilcox, L.: A Dynamic Grouping Technique for Ink and Audio Notes. In: The Proc. ACM UIST, pp. 195–202 (1998)Google Scholar
  19. 19.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 1st edn. Morgan Kaufmann, San Francisco (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jayan C Kurian
    • 1
  • Payam M. Barnaghi
    • 1
  • Michael Ian Hartley
    • 1
  1. 1.School of Computer Science and Information TechnologyUniversity of Nottingham, (Malaysia Campus)SemenyihMalaysia

Personalised recommendations