Advertisement

Research on Segmentation Algorithm of 3d Medical Data

  • Yanjun Peng
  • Dandan Zhang
  • Weidong Zhao
  • Jiaoying Shi
  • Yongguo Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4282)

Abstract

A segmentation algorithm in 3d medical data is proposed based on boundary model and local character structure in this paper. We found out inner voexls and outer voexls by pre-appointed voxel based on boundary model. And then, boundary voexls are correctly classified into different tissues by their eigenvalues of Hessian matrix based on the local character structure. Only eigenvalues of the boundary voxels are computed, so little time is used compared with other algorithms based on local character structure. It can quickly and effectively realize the segmentation of single tissue.

Keywords

segmentation boundary model local character structure voxel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenblum, L.J.: Research issues in scientific visualization. IEEE Computer Graphics and Application 14(2), 61–63 (1994)CrossRefGoogle Scholar
  2. 2.
    Derbin, R.A., Carponter, L., et al.: Volume rendering. Computer Graphics 22(4), 65–74 (1988)CrossRefGoogle Scholar
  3. 3.
    Gorte, B., Stein, A.: Bayesian classification and class area estimation of satellite images using stratification. IEEE Transaction on Geoscience and Remote Sensing 36(3), 803–812 (1998)CrossRefGoogle Scholar
  4. 4.
    Ma, F., Wang, W., et al.: Probabilistic segmentation of volume data for visualization using SOM—PNN classifier. In: IEEE proceedings of visualization symposium, North Carolina, USA, pp. 71–78 (1998)Google Scholar
  5. 5.
    Tizhoosh, H.R.: Fuzzyimageprocessing (1998), http://pmt05.et.uniagdeburg.de/~damid/segmnt.htm
  6. 6.
    Dzung, L.P., Jerry, L.P.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Transaction on Medical Imaging 18(9), 737–752 (1998)Google Scholar
  7. 7.
    He, S.J., Wang, X.: MRI brain images segmentation. In: Asia Pacific Conference on Circuits and Systems, Tianjin, China, pp. 113–116 (1998)Google Scholar
  8. 8.
    Albert, K.W., Zhu, H.: Semi-automatic tumor boundary detection in MR image sequences. In: Proceeding of 2001 international symposium on intelligent multimedia, Video and Speech, New York, USA, pp. 28–31 (2001)Google Scholar
  9. 9.
    Levoy, M.: Volume rendering: Display of surface from volume data. IEEE Computer Graphics and Application 8(3), 29–36 (1988)CrossRefGoogle Scholar
  10. 10.
    Gordon, K., James, W.D.: Semi-automatic generation of transfer functions for direct volume rendering. In: IEEE Symposium on Volume Rendering Processing, Washington, USA, pp. 79–86 (1998)Google Scholar
  11. 11.
    Sato, Y., Nakajima, S., et al.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis 2(2), 43–167 (1998)CrossRefGoogle Scholar
  12. 12.
    Sato, Y., Nakajima, S., et al.: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transaction on Visualization and Computer Graphics 6(2), 160–168 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yanjun Peng
    • 1
    • 2
  • Dandan Zhang
    • 1
  • Weidong Zhao
    • 1
  • Jiaoying Shi
    • 2
  • Yongguo Zheng
    • 1
  1. 1.Dept. of Computer ScienceShandong University of Science & TechnologyQingdaoChina
  2. 2.State Key Laboratory of CAD&CGZhejiang UniversityHang ZhouChina

Personalised recommendations