The starting point for Model-Based Testing is an implementation relation that formally defines when a formal model representing the System Under Test conforms to a formal model constituting its specification. An implementation relation for the formalism of Labelled Transition Systems is ioco. For ioco several test generation algorithms and test tools have been built. In this paper we define a framework for the symbolic implementation relation sioco which lifts ioco to Symbolic Transition Systems. These are transition systems with an explicit notion of data and data-dependent control flow. The introduction of symbolism avoids the state-space explosion during test generation, and it preserves the information present in data definitions and constraints for use during the test selection process. We show the soundness and completeness of the symbolic notions w.r.t. their underlying Labelled Transition Systems’ counterparts.


Label Transition System System Under Test Symbolic Execution Symbolic State Symbolic Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L., Mauw, S., Heerink, L.: Formal test automation: A simple experiment. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.) IWTCS 1999, pp. 179–196. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  2. 2.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language Lotos. Computer Networks 14(1), 25–59 (1988)Google Scholar
  3. 3.
    Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 277–279. Springer, Heidelberg (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Brucker, A.D., Wolff, B.: Symbolic test case generation for primitive recursive functions. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 16–32. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Ehrig, H., Mahr, B., Cornelius, F., Große-Rhode, M., Zeitz, P.: Mathematisch-strukturelle Grundlagen der Informatik, 2nd edn. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  6. 6.
    Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Goga, N.: Comparing torx, autolink, tgv and uio test algorithms. In: Reed, R., Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp. 379–402. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8(3), 231–274 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jard, C., Jéron, T.: TGV: theory, principles and algorithms. In: IDPT 2002. Society for Design and Process Science (2002)Google Scholar
  11. 11.
    Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on approximate analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 349–364. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    King, J.C.: A new approach to program testing. In: Proceedings of the international conference on Reliable software, pp. 228–233. ACM Press, New York (1975)CrossRefGoogle Scholar
  13. 13.
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - A survey. Proceedings of the IEEE 84, 1090–1126 (1996)CrossRefGoogle Scholar
  14. 14.
    Object Management Group. UML 2.0 Superstructure Specification, ptc/03-08-02 edition. Adopted SpecificationGoogle Scholar
  15. 15.
    Rusu, V., du Bousquet, L., Jéron, T.: An Approach to Symbolic Test Generation. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 338–357. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software—Concepts and Tools 17(3), 103–120 (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • L. Frantzen
    • 1
    • 2
  • J. Tretmans
    • 2
  • T. A. C. Willemse
    • 2
  1. 1.Instituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”Consiglio Nazionale delle RicerchePisaItaly
  2. 2.Institute for Computing and Information SciencesRadboud University NijmegenThe Netherlands

Personalised recommendations