Resources Required for Preparing Graph States

  • Peter Høyer
  • Mehdi Mhalla
  • Simon Perdrix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)

Abstract

Graph states have become a key class of states within quantum computation. They form a basis for universal quantum computation, capture key properties of entanglement, are related to quantum error correction, establish links to graph theory, violate Bell inequalities, and have elegant and short graph-theoretical descriptions. We give here a rigorous analysis of the resources required for producing graph states. Using a novel graph-contraction procedure, we show that any graph state can be prepared by a linear-size constant-depth quantum circuit, and we establish trade-offs between depth and width. We show that any minimal-width quantum circuit requires gates that acts on several qubits, regardless of the depth. We relate the complexity of preparing graph states to a new graph-theoretical concept, the local minimum degree, and show that it captures basic properties of graph states.

Keywords

Quantum Computing Algorithms Foundations of computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aliferis, P., Leung, D.W.: Computation by measurements: A unifying picture. Physical Review A 70, 062314 (2004)CrossRefGoogle Scholar
  2. 2.
    Bouchet, A.: Diagraph decompositions and eulerian systems. SIAM J. Algebraic Discrete Methods 8, 323–337 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bouchet, A.: Connectivity of isotropic systems. In: Combinatorial Mathematics: Proc. of the Third International Conference. Ann. New York Acad. Sci., vol. 555, pp. 81–93 (1989)Google Scholar
  4. 4.
    Bouchet, A.: κ-transformations, local complementations and switching. In: Cycles and rays: Basic structures in finite and infinite graphs. NATO Adv. Sci. Inst. Ser., vol. C 301, pp. 41–50. Kluwer Acad. Publ., Dordrecht (1990)Google Scholar
  5. 5.
    Bouchet, A.: Circle graph obstructions. J. Comb. Theory Ser. B 60(1), 107–144 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Duan, L.M., Raussendorf, R.: Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Eisert, J., Gross, D.: Multi-particle entanglement. In: Lectures on Quantum Information, Wiley-VCH, Berlin (2006)Google Scholar
  8. 8.
    de Fraysseix, H.: Local complementation and interlacement graphs. Discrete Mathematics 33(1), 29–35 (1981)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Geelen, J.F.: Matchings, Matroids and Unimodular Matrices. PhD thesis, Univ. Waterloo (1995)Google Scholar
  10. 10.
    Goyal, K., McCauley, A., Raussendorf, R.: Purification of large bi-colorable graph states (May 2006) quant-ph/0605228Google Scholar
  11. 11.
    Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. In: Proc. of the Int. School of Physics Enrico Fermi on Quantum Computers, Algorithms and Chaos (July 2005) quant-ph/0602096 Google Scholar
  12. 12.
    Markov, I., Shi, Y.: Simulating quantum computation by contracting tensor networks. In: Ninth Workshop on Quantum Information Processing (January 2006) (No proceedings) Google Scholar
  13. 13.
    Oum, S.-i.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Perdrix, S.: State transfer instead of teleportation in measurement-based quantum computation. International Journal of Quantum Information 3(1), 219–224 (2005)CrossRefGoogle Scholar
  15. 15.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Physical Review Letters 86, 5188–5191 (2001)CrossRefGoogle Scholar
  16. 16.
    Shi, Y., Duan, L.M., Vidal, G.: Classical simulation of quantum many-body systems with a tree tensor network (in completion) (February 2006)Google Scholar
  17. 17.
    Van den Nest, M.: Local equivalence of stabilizer states and codes. PhD thesis, Faculty of Engineering, K.U. Leuven, Belgium (May 2005)Google Scholar
  18. 18.
    Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for measurement–based quantum computation (April 2006) quant-ph/0604010Google Scholar
  19. 19.
    Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz. 3, 25–30 (1964) (in Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Høyer
    • 1
  • Mehdi Mhalla
    • 2
  • Simon Perdrix
    • 2
  1. 1.Dept. of Comp. Sci.University of CalgaryCanada
  2. 2.Leibniz LaboratoryGrenobleFrance

Personalised recommendations