Minimal Interval Completion Through Graph Exploration

  • Karol Suchan
  • Ioan Todinca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


Given an arbitrary graph G=(V,E) and an interval graph H=(V,F) with E ⊆ F we say that H is an interval completion of G. The graph H is called a minimal interval completion of G if, for any sandwich graph H ′ = (V,F ′) with E ⊆ F′ ⊂ F, H ′ is not an interval graph. In this paper we give a \({{\mathcal{O}}(nm)}\) time algorithm computing a minimal interval completion of an arbitrary graph. The output is an interval model of the completion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berry, A., Bordat, J.P.: Separability Generalizes Dirac’s Theorem. Discrete Applied Mathematics 84(1-3), 43–53 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berry, A., Bordat, J.P.: Local LexBFS Properties in an Arbitrary Graph. Proceedings of Journées Informatiques Messines (2000),
  3. 3.
    Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cai, L.: Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties. Information Processing Letters 58(4), 171–176 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canadian Journal of Mathematics 16, 539–548 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)zbMATHGoogle Scholar
  7. 7.
    Habib, M., Paul, C., Viennot, L.: Partition Refinement Techniques: An Interesting Algorithmic Tool Kit. International Journal of Foundations of Computer Science 10(2), 147–170 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Heggernes, P., Mancini, F.: Minimal Split Completions of Graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal Comparability Completions. Tech. Report, University of Bergen (2006),
  10. 10.
    Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal Interval Completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n α log n) = o(n 2.376). In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms - SODA 2005, pp. 907–916. SIAM, Philadelphia (2005)Google Scholar
  12. 12.
    Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Processing Letters 37(1), 21–25 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rappaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, Springer, Heidelberg (2006), CrossRefGoogle Scholar
  14. 14.
    Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Suchan, K., Todinca, I.: Minimal interval vompletion through graph exploration. Research Report RR 2006-08, Université d’Orléans,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Karol Suchan
    • 1
    • 2
  • Ioan Todinca
    • 1
  1. 1.LIFOUniversité d’OrléansOrléansFrance
  2. 2.Department of Discrete Mathematics, Faculty of Applied MathematicsAGH – University of Science and TechnologyCracowPoland

Personalised recommendations