Analyzing Disturbed Diffusion on Networks

  • Henning Meyerhenke
  • Thomas Sauerwald
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)

Abstract

This work provides the first detailed investigation of the disturbed diffusion scheme FOS/C introduced in [17] as a type of diffusion distance measure within a graph partitioning framework related to Lloyd’s k-means algorithm [14]. After outlining connections to distance measures proposed in machine learning, we show that FOS/C can be related to random walks despite its disturbance. Its convergence properties regarding load distribution and edge flow characterization are examined on two different graph classes, namely torus graphs and distance-transitive graphs (including hypercubes), representatives of which are frequently used as interconnection networks.

Keywords

Disturbed diffusion Diffusion distance Random walks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J.: Foundations of Coding. J. Wiley & Sons, Chichester (1991)MATHGoogle Scholar
  2. 2.
    Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. J. Wiley & Sons, Chichester (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)Google Scholar
  4. 4.
    Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data. Parts I and II. Proc. Natl. Academy of Sciences 102(21), 7426–7437 (2005)CrossRefGoogle Scholar
  5. 5.
    Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. Parallel and Distributed Computing 7, 279–301 (1989)CrossRefGoogle Scholar
  6. 6.
    Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load balancing. Parallel Computing 25(7), 789–812 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Math. Assoc. of America (1984)Google Scholar
  8. 8.
    Ellis, R.B.: Discrete green’s functions for products of regular graphs. In: AMS National Conference, invited talk, special session on Graph Theory (2001)Google Scholar
  9. 9.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 2nd edn. Oxford University Press, Oxford (1992)Google Scholar
  10. 10.
    Gross, J.L., Yellen, J. (eds.): Handbook of Graph Theory. CRC Press, Boca Raton (2004)MATHGoogle Scholar
  11. 11.
    Hu, Y.F., Blake, R.F.: An improved diffusion algorithm for dynamic load balancing. Parallel Computing 25(4), 417–444 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)MATHGoogle Scholar
  13. 13.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Francisco (1992)MATHGoogle Scholar
  14. 14.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–136 (1982)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdös is Eighty 2, 1–46 (1993)Google Scholar
  16. 16.
    Meila, M., Shi, J.: A random walks view of spectral segmentation. In: Eighth International Workshop on Artificial Intelligence and Statistics (AISTATS) (2001)Google Scholar
  17. 17.
    Meyerhenke, H., Monien, B., Schamberger, S.: Accelerating shape optimizing load balancing for parallel FEM simulations by algebraic multigrid. In: Proc. 20th IEEE Intl. Parallel and Distributed Processing Symp (IPDPS 2006), p. 57 (CD). IEEE, Los Alamitos (2006)Google Scholar
  18. 18.
    Nadler, B., Lafon, S., Coifman, R.R., Kevrekidis, I.G.: Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In: NIPS (2005)Google Scholar
  19. 19.
    Saerens, M., Dupont, P., Fouss, F., Yen, L.: The principal components analysis of a graph, and its relationships to spectral clustering. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 371–383. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Schamberger, S.: A shape optimizing load distribution heuristic for parallel adaptive FEM computations. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 263–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-94-125, Carnegie Mellon University (1994)Google Scholar
  22. 22.
    The BlueGene/L Team. An overview of the BlueGene/L supercomputer. In: Proc. ACM/IEEE Conf. on Supercomputing, pp. 1–22 (2002)Google Scholar
  23. 23.
    Tishby, N., Slonim, N.: Data clustering by markovian relaxation and the information bottleneck method. In: NIPS, pp. 640–646 (2000)Google Scholar
  24. 24.
    Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2000)Google Scholar
  25. 25.
    van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, Univ. of Utrecht (2000)Google Scholar
  26. 26.
    Xu, C., Lau, F.C.M.: Load Balancing in Parallel Computers. Kluwer, Dordrecht (1997)Google Scholar
  27. 27.
    Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen, M., Saerens, M.: Clustering using a random-walk based distance measure. In: ESANN 2005, European Symposium on Artificial Neural Networks (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henning Meyerhenke
    • 1
  • Thomas Sauerwald
    • 1
  1. 1.Fakultät für Elektrotechnik, Informatik und MathematikUniversität PaderbornPaderbornGermany

Personalised recommendations