Efficient Implementation of Public Key Cryptosystems on Mote Sensors (Short Paper)

  • Haodong Wang
  • Qun Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4307)


We report our implementation of the RSA and ECC public-key cryptosystem on Berkeley Motes. We detail the implementation of 1024-bit RSA and 160-bit ECC cryptosystems on MICA mote sensors. We have achieved the performance of 0.79s for RSA public key operation and 21.5s for private operation, and 1.3s for ECC signature generation and 2.8s for verification. For comparison, we also show our new ECC implementation on TelosB motes with a signature time 1.60s and a verification time 3.30s. For the detailed description of the implementation, we refer to our technical report [13].


Point Doubling Elliptic Curve Cryptography Chinese Remainder Theorem Slide Window Method Mica Mote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation. In: ICICS 1997, pp. 282–290. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Gupta, V., Millard, M., Fung, S., Zhu, Y., Gura, N., Eberle, H., Shantz, S.: Sizzle: A standards-based end-to-end security architecture for the embedded internet. In: PerCom, Kauai (March 2005)Google Scholar
  4. 4.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and rsa on 8-bit cpus. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Koc, C.K.: High-speed rsa implementation, rsa laboratories technical report tr-201, version 2.0 (November 22, 1994)Google Scholar
  6. 6.
    Koc, C.K.: High-speed rsa implementation. RSA Lab TR201 (November 1994)Google Scholar
  7. 7.
    Liu, A., Ning, P.: Tinyecc: Elliptic curve cryptography for sensor networks (September 15, 2005)Google Scholar
  8. 8.
    Malan, D.J., Welsh, M., Smith, M.D.: A public-key infrastructure for key distribution in tinyos based on elliptic curve cryptography. In: SECON, Santa Clara, CA (October 2004)Google Scholar
  9. 9.
    Montgomery, P.: Modular multiplication without trial division. Mathematics of Communication 44(170), 519–521 (1985)zbMATHCrossRefGoogle Scholar
  10. 10.
    Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. Theoretical Informatics and Applications 24, 531–543 (1990)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Chang Shantz, S.: From euclid’s gcd to montgomery multiplication to the great divide. Technical report, Sun Lab TR-2001-95 (June 2001)Google Scholar
  12. 12.
    Wang, H., Li, Q.: Distributed user access control in sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 305–320. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Li, Q.: Efficient Implementation of Public Key Cryptosystems on MicaZ and TelosB Motes. Technical Report WM-CS-2006, College of William and Mary (October 2006)Google Scholar
  14. 14.
    Wang, H., Sheng, B., Li, Q.: Elliptic curve cryptography based access control in sensor networks. Int. Journal of Security and Networks 1(2) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Haodong Wang
    • 1
  • Qun Li
    • 1
  1. 1.Department of Computer ScienceCollege of William and Mary 

Personalised recommendations