Advertisement

Efficient Protocols for Privacy Preserving Matching Against Distributed Datasets

  • Yingpeng Sang
  • Hong Shen
  • Yasuo Tan
  • Naixue Xiong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4307)

Abstract

When datasets are distributed on different sources, finding out matched data while preserving the privacy of the datasets is a widely required task. In this paper, we address two matching problems against the private datasets on N (N≥2) parties. The first one is the Privacy Preserving Set Intersection (PPSI) problem, in which each party wants to learn the intersection of the N private datasets. The second one is the Privacy Preserving Set Matching (PPSM) problem, in which each party wants to learn whether its elements can be matched in any private set of the other parties. For the two problems we propose efficient protocols based on a threshold cryptosystem which is additive homomorphic. In a comparison with the related work in [18], the computation and communication costs of our PPSI protocol decrease by 81% and 17% respectively, and the computation and communication costs of our PPSM protocol decrease by 80% and 50% respectively. In practical utilities both of our protocols save computation time and communication bandwidth.

Keywords

cryptographic protocol privacy preservation distributed database set intersection set matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boudot, F., Schoenmakers, B., Traor’e, J.: A Fair and Efficient Solution to the Socialist Millionaires’ Problem. Discrete Applied Mathematics 111(1-2), 23–36 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cramer, R., Damgard, I., Nielsen, J.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Du, W., Attalah, M.: Protocols for Secure Remote Database Access with Approximate Matching. In: Proc. of the 7th ACM CCS, the 1st Workshop on Security and Privacy in E-commerce (2000)Google Scholar
  4. 4.
    Fagin, R., Naor, M., Winkler, P.: Comparing Information without Leaking It. Communications of the ACM 39(5), 77–85 (1996)CrossRefGoogle Scholar
  5. 5.
    Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M., Wright, R.: Secure Multiparty Computation of Approximations. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 927–938. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Fouque, P., Poupard, G., Stern, J.: Sharing Decryption in the Context of Voting or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–140. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Fouque, P., Pointcheval, D.: Threshold Cryptosystems Secure against Chosen-ciphertext Attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 351–368. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Freedman, M., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T.: On Secure Scalar Product Computation for Privacy-Preserving Data Mining. In: Proc. of ICISC (2004)Google Scholar
  10. 10.
    Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game. In: Proc. of 19th STOC, pp. 218–229 (1987)Google Scholar
  13. 13.
    Hartman, T., Raz, R.: On the Distribution of the Number of Roots of Polynomials and Explicit Weak Designs. Random Structures and Algorithms 23(3), 235–263 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hohenberger, S., Weis, S.A.: Honest-Verifier Private Disjointness Testing without Random Oracles. In: Workshop on Privacy Enhancing Technologies (PET) (2006)Google Scholar
  15. 15.
    Indyk, P., Woodruff, D.: Polylogarithmic Private Approximations and Efficient Matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evaluation via Ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Lipmaa, H.: Verifiable Homomorphic Oblivious Transfer and private Equality Test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: Proc. of the 31st Annual ACM Symposium on Theory of Computing, pp. 245–254 (1999)Google Scholar
  21. 21.
    Paillier, P.: Public-key Cryptosystems based on Composite Degree Residuosity Classes. In: Proc. of Asiacrypt 2000, pp. 573–584 (2000)Google Scholar
  22. 22.
    Randall, D.: Efficient Generation of Random Nonsingular Matrices. Random Structures and Algorithms 4(1), 111–118 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Xiong, N., Defago, X., Jia, X., Yang, Y., He, Y.: Design and Analysis of a Self-tuning Proportional and Integral Controller for Active Queue Management Routers to support TCP Flows. In: Proc. of IEEE INFOCOM (2006)Google Scholar
  24. 24.
    Yao, A.C.: Protocols for Secure Computations. In: Proc. of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yingpeng Sang
    • 1
  • Hong Shen
    • 2
  • Yasuo Tan
    • 1
  • Naixue Xiong
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologySchool of Information ScienceIshikawaJapan
  2. 2.School of Computer ScienceThe University of AdelaideAustralia

Personalised recommendations