Secure Sketch for Biometric Templates

  • Qiming Li
  • Yagiz Sutcu
  • Nasir Memon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

There have been active discussions on how to derive a consistent cryptographic key from noisy data such as biometric templates, with the help of some extra information called a sketch. It is desirable that the sketch reveals little information about the biometric templates even in the worst case (i.e., the entropy loss should be low). The main difficulty is that many biometric templates are represented as points in continuous domains with unknown distributions, whereas known results either work only in discrete domains, or lack rigorous analysis on the entropy loss. A general approach to handle points in continuous domains is to quantize (discretize) the points and apply a known sketch scheme in the discrete domain. However, it can be difficult to analyze the entropy loss due to quantization and to find the “optimal” quantizer. In this paper, instead of trying to solve these problems directly, we propose to examine the relative entropy loss of any given scheme, which bounds the number of additional bits we could have extracted if we used the optimal parameters. We give a general scheme and show that the relative entropy loss due to suboptimal discretization is at most (nlog3), where n is the number of points, and the bound is tight. We further illustrate how our scheme can be applied to real biometric data by giving a concrete scheme for face biometrics.

Keywords

Secure sketch biometric template continuous domain 

References

  1. 1.
    Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM CCS, Washington DC, USA. ACM Press, New York (2004)Google Scholar
  3. 3.
    Chang, E.-C., Fedyukovych, V., Li, Q.: Secure sketch for multi-set difference. Cryptology ePrint Archive, Report, 2006/090 (2006), http://eprint.iacr.org/
  4. 4.
    Chang, E.-C., Li, Q.: Small secure sketch for point-set difference. Cryptology ePrint Archive, Report, 2005/145 (2005), http://eprint.iacr.org/
  5. 5.
    Chang, E.-C., Li, Q.: Hiding secret points amidst chaff. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 59–72. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cheng, Y.-Q.: Human face recognition method based on the statistical model of small sample size. In: SPIE Proc. Intell. Robot and Compu. Vision, pp. 85–95 (1991)Google Scholar
  7. 7.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Hao, F., Chan, C.W.: Private key generation from on-line handwritten signatures. Information Management and Computer Security 10(2) (2002)Google Scholar
  9. 9.
    Hao, F., Anderson, R., Daugman, J.: Combining cryptography with biometrics effectively. Technical Report UCAM-CL-TR-640, University of Cambridge (2005)Google Scholar
  10. 10.
    Hong, Z.: Algebraic feature extraction of image for recognition. Pattern Recognition 24, 211–219 (1991)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Juels, A., Sudan, M.: A fuzzy vault scheme. In: IEEE Intl. Symp. on Information Theory (2002)Google Scholar
  12. 12.
    Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS, pp. 28–36 (1999)Google Scholar
  13. 13.
    Linnartz, J.-P., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: AVBPA 2003, pp. 393–402 (2003)Google Scholar
  14. 14.
    Maurer, U.M., Wolf, S.: Information-theoretic key agreement: From weak to strong secrecy for free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 351. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Monrose, F., Reiter, M.K., Li, Q., Wetzel, S.: Cryptographic key generation from voice. In: IEEE Symp. on Security and Privacy (2001)Google Scholar
  16. 16.
    Spacek, L.: The essex faces94 database, http://cswww.essex.ac.uk/mv/allfaces/
  17. 17.
    Sutcu, Y., Sencar, T., Memon, N.: A secure biometric authentication scheme based on robust hashing. In: ACM MM-SEC Workshop (2005)Google Scholar
  18. 18.
    Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Schrijen, G.-J., Bazen, A.M., Veldhuis, R.N.J.: Practical biometric authentication with template protection. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 436–446. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric authentication systems. In: ECCV Workshop BioAW, pp. 158–170 (2004)Google Scholar
  20. 20.
    Yang, S., Verbauwhede, I.: Automatic secure fingerprint verification system based on fuzzy vault scheme. In: IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 609–612 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qiming Li
    • 1
  • Yagiz Sutcu
    • 2
  • Nasir Memon
    • 3
  1. 1.Department of Computer and Information Science 
  2. 2.Department of Electrical and Computer Engineering 
  3. 3.Department of Computer and Information SciencePolytechnic UniversityBrooklynUSA

Personalised recommendations