Advertisement

Combining Compression Functions and Block Cipher-Based Hash Functions

  • Thomas Peyrin
  • Henri Gilbert
  • Frédéric Muller
  • Matt Robshaw
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

The design of secure compression functions is of vital importance to hash function development. In this paper we consider the problem of combining smaller trusted compression functions to build a larger compression function. This work leads directly to impossibility results on a range of block cipher-based hash function constructions.

Keywords

block ciphers compression functions hash functions 

References

  1. 1.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  2. 2.
    Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Black, J.A., Cochran, M., Shrimpton, T.: On the Impossibility of Highly-Efficient Blockcipher-Based Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Brown, L., Pieprzyk, J., Seberry, J.: LOKI - a Cryptographic Primitive for Authentication and Secrecy Applications. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 229–236. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  5. 5.
    Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J., Brachtl, B., Schilling, M.: Data Authentication Using Modification Detection Codes Based on a Public One Way Encryption Function. U.S. Patent No. 4,908,861, March 13 (1990)Google Scholar
  6. 6.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Damgård, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Dean, R.D.: Formal Aspects of Mobile Code Security. Ph.D thesis, Princeton University (1999)Google Scholar
  9. 9.
    Handschuh, H., Knudsen, L.R., Robshaw, M.J.B.: Analysis of SHA-1 in Encryption Mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Kelsey, J., Schneier, B.: Second Preimages on shape n-Bit Hash Functions for Much Less than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Knudsen, L.R., Lai, X.: New Attacks on All Double Block Length Hash Functions of Hash Rate 1, Including the Parallel-DM. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 410–418. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Knudsen, L.R., Muller, F.: Some Attacks Against a Double Length Hash Proposal. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Knudsen, L.R., Preneel, B.: Hash Functions Based on Block Ciphers and Quaternary Codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 77–90. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Knudsen, L.R., Preneel, B.: Fast and Secure Hashing Based on Codes. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Knudsen, L.R., Preneel, B.: Construction of Secure and Fast Hash Functions Using Nonbinary Error-Correcting Codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  20. 20.
    Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of Iterated Hash Functions Based on Block Ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1994)Google Scholar
  22. 22.
    Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Matsumoto, R., Kurosawa, K., Itoh, T.: Primal-Dual Distance Bounds of Linear Codes with Application to Cryptography. IACR Cryptology ePrint Archive, Report 2005/194 (2005), http://eprint.iacr.org
  25. 25.
    Meier, W., Staffelbach, O.: Nonlinearity Criteria for Cryptographic Functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990)Google Scholar
  26. 26.
    Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton (1996)CrossRefGoogle Scholar
  27. 27.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  28. 28.
    Nandi, M., Lee, W.I., Sakurai, K., Lee, S.-J.: Security Analysis of a 2/3-Rate Double Length Compression Function in the Black-Box Model. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    National Institute of Standards and Technology. FIPS 197: Advanced Encryption Standard (November 2001), http://csrc.nist.gov
  30. 30.
    National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard (August 2002), http://csrc.nist.gov
  31. 31.
    National Insitute of Standards and Technology. SP800-67: Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher (May 2004), http://csrc.nist.gov
  32. 32.
    Preneel, B.: Analysis and Design of Cryptographic Hash Functions. Ph.D thesis, Katholieke Universiteit Leuven (1993)Google Scholar
  33. 33.
    Preneel, B., Bosselaers, A., Govaerts, R., Vandewalle, J.: Collision-free Hash Functions Based on Block Cipher Algorithms. In: Proceedings 1989 International Carnahan Conference on Security Technology, Zurich, Switzerland, October 3–5, 1989, pp. 203–210. IEEE, Los Alamitos (1989); IEEE catalog number 89CH2774-8CrossRefGoogle Scholar
  34. 34.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  35. 35.
    Quisquater, J.-J., Girault, M.: 2n-bit Hash-functions Using n-bit Symmetric Block Cipher Algorithms. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 102–109. Springer, Heidelberg (1990)Google Scholar
  36. 36.
    Preneel, B., Govaerts, R., Vandewalle, J.: On the Power of Memory in the Design of Collision Resistant Hash Functions. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 105–121. Springer, Heidelberg (1993)Google Scholar
  37. 37.
    Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992), http://www.ietf.org/rfc/rfc1321.txt
  38. 38.
    Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  39. 39.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Peyrin
    • 1
  • Henri Gilbert
    • 1
  • Frédéric Muller
    • 2
  • Matt Robshaw
    • 1
  1. 1.France Télécom R&D, Issy les MoulineauxFrance
  2. 2.HSBCParisFrance

Personalised recommendations