Abstract

Currently, the best and only evidence of the security of the OAEP encryption scheme is a proof in the contentious random oracle model. Here we give further arguments in support of the security of OAEP. We first show that partial instantiations, where one of the two random oracles used in OAEP is instantiated by a function family, can be provably secure (still in the random oracle model). For various security statements about OAEP we specify sufficient conditions for the instantiating function families that, in some cases, are realizable through standard cryptographic primitives and, in other cases, may currently not be known to be achievable but appear moderate and plausible. Furthermore, we give the first non-trivial security result about fully instantiated OAEP in the standard model, where both oracles are instantiated simultaneously. Namely, we show that instantiating both random oracles in OAEP by modest functions implies non-malleability under chosen plaintext attacks for random messages. We also discuss the implications, especially of the full instantiation result, to the usage of OAEP for secure hybird encryption (as required in SSL/TLS, for example).

References

  1. 1.
    Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Brown, D.R.L.: Unprovable Security of RSA-OAEP in the Standard Model. Cryptology ePrint Archive, Report 2006/223 (2006)Google Scholar
  3. 3.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS 1993, pp. 62–73. ACM, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption – how to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Bleichenbacher, D.: Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. Journal on Computing 13, 850–864 (1984)MATHMathSciNetGoogle Scholar
  9. 9.
    Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation scenarios for OAEP and other practical schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 412–429. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Boldyreva, A., Fischlin, M.: On the Security of OAEP. Full version of this paper, available from the authors’ homepages (2006)Google Scholar
  11. 11.
    Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC 1998, pp. 209–218. ACM, New York (1998)CrossRefGoogle Scholar
  13. 13.
    Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions. In: STOC 1998, pp. 131–140. ACM, New York (1998)CrossRefGoogle Scholar
  14. 14.
    Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. Journal on Computing 30(2), 391–437 (2000)MATHMathSciNetGoogle Scholar
  16. 16.
    Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS 2003. IEEE, Los Alamitos (2003)Google Scholar
  18. 18.
    IETF-TLS Working Group. Transport Layer Security (November 2005), http://www.ietf.org/html.charters/tls-charter.html
  19. 19.
    Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Yao, A.: Theory and applications of trapdoor functions. In: FOCS 1982, pp. 80–91. IEEE, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexandra Boldyreva
    • 1
  • Marc Fischlin
    • 2
  1. 1.College of Computing, Georgia Institute of TechnologyUSA
  2. 2.Darmstadt University of TechnologyGermany

Personalised recommendations