On the Generic Construction of Identity-Based Signatures with Additional Properties

  • David Galindo
  • Javier Herranz
  • Eike Kiltz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

It has been demonstrated by Bellare, Neven, and Namprempre (Eurocrypt 2004) that identity-based signature schemes can be constructed from any PKI-based signature scheme. In this paper we consider the following natural extension: is there a generic construction of “identity-based signature schemes with additional properties” (such as identity-based blind signatures, verifiably encrypted signatures, ...) from PKI-based signature schemes with the same properties? Our results show that this is possible for great number of properties including proxy signatures; (partially) blind signatures; verifiably encrypted signatures; undeniable signatures; forward-secure signatures; (strongly) key insulated signatures; online/offline signatures; threshold signatures; and (with some limitations) aggregate signatures.

Using well-known results for PKI-based schemes, we conclude that such identity-based signature schemes with additional properties can be constructed, enjoying some better properties than specific schemes proposed until know. In particular, our work implies the existence of identity-based signatures with additional properties that are provably secure in the standard model, do not need bilinear pairings, or can be based on general assumptions.

References

  1. 1.
    Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3), 185–215 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM Journal on Computing 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: 30th ACM STOC, pp. 209–218 (1998)Google Scholar
  10. 10.
    Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, USA, pp. 199–203 (1983)Google Scholar
  12. 12.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two improved partially blind signature schemes from bilinear pairings. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Damgård, I.B., Pedersen, T.P.: New convertible undeniable signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Galbraith, S.D., Mao, W.: Invisibility and anonymity of undeniable and confirmer signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based signatures with additional properties. Cryptology ePrint Archive, Report 2006/296 (2006), Full version of this paper, http://eprint.iacr.org/
  18. 18.
    Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Gu, C., Zhu, Y.: An ID-based verifiable encrypted signature scheme based on hess’s scheme. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 42–52. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Herranz, J.: Deterministic identity-based signatures for partial aggregation. The Computer Journal 49(3), 322–330 (2006)CrossRefGoogle Scholar
  22. 22.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Laguillaumie, F., Vergnaud, D.: Short undeniable signatures without random oracles: The missing link. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 283–296. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  28. 28.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing over elliptic curve (in Japanese). In: SCIS 2001 (January 2001)Google Scholar
  29. 29.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  30. 30.
    Zhang, F., Kim, K.: Efficient ID-based blind signature and proxy signature from bilinear pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 312–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Galindo
    • 1
  • Javier Herranz
    • 2
  • Eike Kiltz
    • 2
  1. 1.Institute for Computing and Information SciencesRadboud UniversityNijmegenThe Netherlands
  2. 2.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands

Personalised recommendations