Trend Detection in Folksonomies

  • Andreas Hotho
  • Robert Jäschke
  • Christoph Schmitz
  • Gerd Stumme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4306)

Abstract

As the number of resources on the web exceeds by far the number of documents one can track, it becomes increasingly difficult to remain up to date on ones own areas of interest. The problem becomes more severe with the increasing fraction of multimedia data, from which it is difficult to extract some conceptual description of their contents.

One way to overcome this problem are social bookmark tools, which are rapidly emerging on the web. In such systems, users are setting up lightweight conceptual structures called folksonomies, and overcome thus the knowledge acquisition bottleneck. As more and more people participate in the effort, the use of a common vocabulary becomes more and more stable. We present an approach for discovering topic-specific trends within folksonomies. It is based on a differential adaptation of the PageRank algorithm to the triadic hypergraph structure of a folksonomy. The approach allows for any kind of data, as it does not rely on the internal structure of the documents. In particular, this allows to consider different data types in the same analysis step. We run experiments on a large-scale real-world snapshot of a social bookmarking system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying Communities of Practice through Ontology Network Analysis. IEEE Intelligent Systems 18(2), 18–25 (2003)CrossRefGoogle Scholar
  2. 2.
    Amitay, E., Carmel, D., Herscovici, M., Lempel, R., Soffer, A.: Trend detection through temporal link analysis. J. Am. Soc. Inf. Sci. Technol. 55(14), 1270–1281 (2004)CrossRefGoogle Scholar
  3. 3.
    Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. In: Proc. 15th Int. WWW Conference (May 2006)Google Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations. Springer, Heidelberg (1999)MATHGoogle Scholar
  8. 8.
    Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I): A General Review. D-Lib Magazine 11(4) (April 2005)Google Scholar
  9. 9.
    Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Semantic network analysis of ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS (LNAI), vol. 4011, pp. 514–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS (LNAI), vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Kleinberg, J.: Temporal dynamics of on-line information streams. In: Garofalakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management: Processing High-Speed Data Streams. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Lund, B., Hammond, T., Flack, M., Hannay, T.: Social Bookmarking Tools (II): A Case Study - Connotea. D-Lib Magazine 11(4) (April 2005)Google Scholar
  15. 15.
    Mathes, A.: Folksonomies – Cooperative Classification and Communication Through Shared Metadata (December 2004), http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
  16. 16.
    Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Staab, S., Santini, S., Nack, F., Steels, L., Maedche, A.: Emergent semantics. Intelligent Systems, IEEE [see also IEEE Expert] 17(1), 78–86 (2002)CrossRefGoogle Scholar
  18. 18.
    Steels, L.: The origins of ontologies and communication conventions in multi-agent systems. Autonomous Agents and Multi-Agent Systems 1(2), 169–194 (1998)CrossRefGoogle Scholar
  19. 19.
    Stumme, G.: A finite state model for on-line analytical processing in triadic contexts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 315–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)Google Scholar
  21. 21.
    Xi, W., Zhang, B., Lu, Y., Chen, Z., Yan, S., Zeng, H., Ma, W., Fox, E.: Link fusion: A unified link analysis framework for multi-type interrelated data objects. In: Proc. 13th International World Wide Web Conference, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Hotho
    • 1
  • Robert Jäschke
    • 1
    • 2
  • Christoph Schmitz
    • 1
  • Gerd Stumme
    • 1
    • 2
  1. 1.Knowledge & Data Engineering Group, Department of Mathematics and Computer ScienceUniversity of KasselKasselGermany
  2. 2.Research Center L3SHannoverGermany

Personalised recommendations