Hashing with Polynomials

  • Vladimir Shpilrain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4296)

Abstract

In this paper, we explore potential mathematical principles and structures that can provide the foundation for cryptographic hash functions, and also present a simple and efficiently computable hash function based on a non-associative operation with polynomials over a finite field of characteristic 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdukhalikov, K.S., Kim, C.: On the Security of the Hashing Scheme Based on SL 2. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 93–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Charles, D., Goren, E., Lauter, K.: Cryptographic hash functions from expander graphs (preprint), http://www.math.mcgill.ca/goren/PAPERSpublic/Hashfunction.pdf
  3. 3.
    Charnes, C., Pieprzyk, J.: Attacking the SL 2 hashing scheme. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 322–330. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Geiselmann, W.: A Note on the Hash Function of Tillich and Zémor. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 257–263. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Landau, S.: Find Me a Hash. Notices Amer. Math. Soc. 53, 330–332 (2006)MATHMathSciNetGoogle Scholar
  7. 7.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  8. 8.
    Steinwandt, R., Grassl, M., Geiselmann, W., Beth, T.: Weaknesses in the \({SL}_{2}({F}_{2^{n}})\) Hashing Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 287–299. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Tillich, J.-P., Zémor, G.: Hashing with SL 2. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vladimir Shpilrain
    • 1
  1. 1.Department of MathematicsThe City College of New YorkNew YorkUSA

Personalised recommendations