Defining Classifier Regions for WSD Ensembles Using Word Space Features

  • Harri M. T. Saarikoski
  • Steve Legrand
  • Alexander Gelbukh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)

Abstract

Based on recent evaluation of word sense disambiguation (WSD) systems [10], disambiguation methods have reached a standstill. In [10] we showed that it is possible to predict the best system for target word using word features and that using this ’optimal ensembling method’ more accurate WSD ensembles can be built (3-5% over Senseval state of the art systems with the same amount of possible potential remaining). In the interest of developing if more accurate ensembles, w e here define the strong regions for three popular and effective classifiers used for WSD task (Naive Bayes – NB, Support Vector Machine – SVM, Decision Rules – D) using word features (word grain, amount of positive and negative training examples, dominant sense ratio). We also discuss the effect of remaining factors (feature-based).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edmonds, P., Kilgarriff, A.: Introduction to the Special Issue on evaluating word sense disambiguation programs. Journal of Natural Language Engineering 8(4) (2002)Google Scholar
  2. 2.
    Forman, G., Cohen, I.: Learning from Little: Comparison of Classifiers Given Little Training. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, Springer, Heidelberg (2004), http://ecmlpkdd.isti.cnr.it/ Google Scholar
  3. 3.
    Hoste, V., Hendrickx, I., Daelemans, W., van den Bosch, A.: Parameter optimization for machine-learning of word sense disambiguation. Journal of Natural Language Engineering 8(4), 311–327 (2002)CrossRefGoogle Scholar
  4. 4.
    Legrand, S., Pulido, J.G.R.: A Hybrid Approach to Word Sense Disambiguation: Neural Clustering with Class Labeling. In: Knowledge Discovery and Ontologies workshop at 15th European Conference on Machine Learning (ECML) (2004)Google Scholar
  5. 5.
    Luo, F., Khan, L., Bastani, F., Yen, I.-L., Zhou, J.: A dynamically growing self-organizing tree (DGSOT) for hierarchical clustering gene expression profiles. Bioinformatics 20(16), 2605–2617 (2004)CrossRefGoogle Scholar
  6. 6.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD (KDD 2006) (2006)Google Scholar
  7. 7.
    Mihalcea, R.: Word sense disambiguation with pattern learning and automatic feature selection. Journal of Natural Language Engineering 8(4), 343–359 (2002)CrossRefGoogle Scholar
  8. 8.
    Mihalcea, R., Kilgarriff, A., Chklovski, T.: The SENSEVAL-3 English lexical sample task. In: Proceedings of SENSEVAL-3 Workshop at ACL (2004)Google Scholar
  9. 9.
    Pedersen, T.: Machine Learning with Lexical Features: The Duluth Approach to Senseval-2. In: Proceedings of SENSEVAL-2: Second International Workshop on Evaluating Word Sense Disambiguation Systems (2002)Google Scholar
  10. 10.
    Saarikoski, H., Legrand, S.: Building an Optimal WSD Ensemble Using Per-Word Selection of Best System. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar
  12. 12.
    Yarowsky, D., Cucerzan, S., Florian, R., Schafer, C., Wicentowski, R.: The Johns Hopkins SENSEVAL2 System Descriptions. In: Proceedings of SENSEVAL-2 workshop (2002)Google Scholar
  13. 13.
    Yarowsky, D., Florian, R.: Evaluating sense disambiguation across diverse parameter spaces. Journal of Natural Language Engineering 8(4), 293–311 (2002)CrossRefGoogle Scholar
  14. 14.
    Zavrel, J., Degroeve, S., Kool, A., Daelemans, W., Jokinen, K.: Diverse Classifiers for NLP Disambiguation Tasks. Comparisons, Optimization, Combination, and Evolution. In: TWLT 18. Learning to Behave. CEvoLE 2, pp. 201–221 (2000)Google Scholar
  15. 15.
    Seo, H.-C., Rim, H.-C., Kim, S.-H.: KUNLP system in Senseval-2. In: Proceedings of SENSEVAL-2 Workshop, pp. 222–225 (2001)Google Scholar
  16. 16.
    Strapparava, C., Gliozzo, A., Giuliano, C.: Pattern abstraction and term similarity for Word Sense Disambiguation: IRST at Senseval-3. In: Proceedings of SENSEVAL-3 workshop (2004)Google Scholar
  17. 17.
    Manning, C., Tolga Ilhan, H., Kamvar, S., Klein, D., Toutanova, K.: Combining Heterogeneous Classifiers for Word-Sense Disambiguation. In: Proceedings of SENSEVAL-2, Second International Workshop on Evaluating WSD Systems, pp. 87–90 (2001)Google Scholar
  18. 18.
    Lee, Y.-K., Ng, H.-T., Chia, T.-K.: Supervised Word Sense Disambiguation with Support Vector Machines and Multiple Knowledge Sources. In: Proceedings of SENSEVAL-3 workshop (2004)Google Scholar
  19. 19.
    Grozea, C.: Finding optimal parameter settings for high performance word sense disambiguation. In: SENSEVAL-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona, Spain (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Harri M. T. Saarikoski
    • 1
  • Steve Legrand
    • 2
    • 3
  • Alexander Gelbukh
    • 3
  1. 1.KIT Language Technology Doctorate SchoolHelsinki UniversityFinland
  2. 2.Department of Computer ScienceUniversity of JyväskyläFinland
  3. 3.Instituto Politecnico NacionalMexico CityMexico

Personalised recommendations