Histograms, Wavelets and Neural Networks Applied to Image Retrieval

  • Alain C. Gonzalez
  • Juan H. Sossa
  • Edgardo Manuel Felipe Riveron
  • Oleksiy Pogrebnyak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


We tackle the problem of retrieving images from a database. In particular we are concerned with the problem of retrieving images of airplanes belonging to one of the following six categories: 1) commercial planes on land, 2) commercial planes in the air, 3) war planes on land, 4) war planes in the air, 5) small aircrafts on land, and 6) small aircrafts in the air. During training, a wavelet-based description of each image is first obtained using Daubechies 4-wavelet transformation. The resulting coefficients are then used to train a neural network. During classification, test images are presented to the trained system. The coefficients are obtained from the Daubechies transform from histograms of a decomposition of the image into square sub-images of each channel of the original image. 120 images were used for training and 240 for independent testing. An 88% correct identification rate was obtained.


Image Retrieval Wavelet Coefficient Pattern Recognition Letter Neural Network Apply Correct Identification Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Del Bimbo, A.: Visual Information Retrieval. Morgan Kaufmann, San Francisco (1999)Google Scholar
  2. 2.
    Lew, S.M.: Next-Generation Web Searches for Visual Content. Computer, Information Retrieval 33(11), 46–53 (2000)Google Scholar
  3. 3.
    Leung, C.: Visual Information Systems. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Park, S.B., Lee, J.W., Kim, S.K.: Content-based image classification using a neural network. Pattern Recognition Letters 25, 287–300 (2004)CrossRefGoogle Scholar
  5. 5.
    Zhang, S., Salari, E.: Image denoising using a neural network based on non-linear filter in wavelet domain, Acoustics, Speech, and Signal Processing. In: Proceedings IEEE International Conference ICASSP 2005, March 18-23, 2005, vol. 2, pp. 989–992 (2005)Google Scholar
  6. 6.
    Manish, N.S., Bodruzzaman, M., Malkani, M.J.: Feature Extraction using Wavelet Transform for Neural Network based Image Classification. IEEE, Los Alamitos (1998), 0-7803-4547-9Google Scholar
  7. 7.
    Puzicha, J., Hofmann, T., Buhmann, J.M.: Histogram Clustering for Unsupervised Segmentation and Image Retrieval. Pattern Recognition Letters 20, 899–909 (1999)CrossRefGoogle Scholar
  8. 8.
    Mandal, M.K., Aboulnasr, T.: Fast Wavelets Histogram Techniques for Image Indexing. Computer Vision and Understanding 75(1-2), 99–110 (1999)CrossRefGoogle Scholar
  9. 9.
    Liapis, S., Tziritas, G.: Color and texture image retrieval using chromaticity histograms and wavelet frames. Multimedia, IEEE Transactions on Multimedia (5), 676–686 (2004)Google Scholar
  10. 10.
    Vetterli, M.: Wavelets, Approximation, and Compression. IEEE Signal Processing Magazine 1, 59–73 (2000)Google Scholar
  11. 11.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure and Applied Mathematics. 41, 909–996 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Xiong, Z., Ramchandran, K., Orchard, M.T.: Space-Frequency Quantization for Wavelet Image Coding. IEEE Transactions on Image Processing 6(5) (1997)Google Scholar
  13. 13.
    Papamarcos, N., Atsalakis, A.E., Strouthopoulos, C.P.: Adaptive Color Reduction. IEEE Transactions on Systems, Man and Cybernetics – Part B: Cybernetics 32(1) (2002)Google Scholar
  14. 14.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab. Pearson Prentice Hall (2004)Google Scholar
  15. 15.
    Jou, F.D., Fan, K.C., Chang, Y.L.: Efficient matching of large-size histograms. Pattern Recognition Letters 25, 277–286 (2004)CrossRefGoogle Scholar
  16. 16.
    McGuire, P., D‘Eleuterio, G.M.T.: Eigenpaxels and a Neural Network Approach to Image Classification. IEEE Transactions on Neural Networks 12(3) (2001)Google Scholar
  17. 17.
    Gasca, A.E., Barandela, A.R.: Algoritmos de aprendizaje y técnicas estadísticas para el entrenamiento del Perceptrón Multicapa. IV Simposio Iberoamericano de Reconocimiento de Patrones, Cuba, pp. 456-464 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alain C. Gonzalez
    • 1
    • 2
  • Juan H. Sossa
    • 2
  • Edgardo Manuel Felipe Riveron
    • 2
  • Oleksiy Pogrebnyak
    • 2
  1. 1.Electronics and Electrical Engineering DepartmentTechnologic Institute of TolucaMetepecMéxico
  2. 2.Computing Research CenterNational Polytechnic InstituteMéxico D.F.

Personalised recommendations