Pre-conceptual Schema: A Conceptual-Graph-Like Knowledge Representation for Requirements Elicitation

  • Carlos Mario Zapata Jaramillo
  • Alexander Gelbukh
  • Fernando Arango Isaza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


A simple representation framework for ontological knowledge with dynamic and deontic characteristics is presented. It represents structural relationships (is-a, part/whole), dynamic relationships (actions such as register, pay, etc.), and conditional relationships (if-then-else). As a case study, we apply our representation language to the task of requirements elicitation in software engineering. We show how our pre-conceptual schemas can be obtained from controlled natural language discourse and how these diagrams can be then converted into standard UML diagrams. Thus our representation framework is shown to be a useful intermediate step for obtaining UML diagrams from natural language discourse.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove (2000)Google Scholar
  2. 2.
    Brewster, C., O’Hara, K., Fuller, S., Wilks, Y., Franconi, E., Musen, M., Ellman, J., Shum, S.: Knowledge Representation with Ontologies: The Present and Future. IEEE Intelligent Systems 19(1), 72–81 (2004)CrossRefGoogle Scholar
  3. 3.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley Publishing Co., Reading (1984)MATHGoogle Scholar
  4. 4.
    Knowledge Interchange Format. Draft proposed American National Standard (dpANS) NCITS.T2/98-004.
  5. 5.
    Leite, J.: A survey on requirements analysis, Advanced Software Engineering Project. Technical Report RTP-071, Department of Information and Computer Science, University of California at Irvine (1987)Google Scholar
  6. 6.
    Cook, S.C., Kasser, J.E., Asenstorfer, J.: A Frame-Based Approach to Requirements Engineering. In: Proc. of 11th International Symposium of the INCOSE, Melbourne (2001)Google Scholar
  7. 7.
    Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., Rifaut, A.: A Knowledge Representation Language for Requirements Engineering. Proceedings of the IEEE 74(10), 1431–1444 (1986)CrossRefGoogle Scholar
  8. 8.
    Hagelstein, J.: Declarative Approach to Information Systems Requirements. Knowledge Based Systems 1(4), 211–220 (1988)CrossRefGoogle Scholar
  9. 9.
    Greenspan, S.: Requirements Modeling: A Knowledge Representation Approach to Software Requirements Definition. PhD thesis, Dept. of Computer Science, University of Toronto (1984)Google Scholar
  10. 10.
    Greenspan, S., Mylopoulos, J., Borgida, A.: On Formal Requirements Modelling Languages: RML Revisited. In: Proceedings of the Sixteenth Intl. Conf. on Software Engineering, Sorrento, pp. 135–148. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  11. 11.
    Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge about Information Systems. Transactions on Information Systems 8(4), 325–362 (1990)CrossRefGoogle Scholar
  12. 12.
    Jeusfeld, M.: Change Control in Deductive Object Bases. INFIX Pub, Bad Honnef (1992)Google Scholar
  13. 13.
    Tsai, J., Weigert, T., Jang, H.: A Hybrid Knowledge Representation as a Basis of Requirement Specification and Specification Analysis. IEEE Transactions on Software Engineering 18(12), 1076–1100 (1992)CrossRefGoogle Scholar
  14. 14.
    Ramos, J.J.: PML–A modeling language for physical knowledge representation. Ph.D. Thesis, Universitat Autònoma de Barcelona (2003)Google Scholar
  15. 15.
    Pulman, S.: Controlled Language for Knowledge Representation. In: Proceedings of the First International Workshop on Controlled Language Applications, Leuven, pp. 233–242 (1996)Google Scholar
  16. 16.
    Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). In: Proceedings of the First International Workshop on Controlled Language Applications, Leuven (1996) Google Scholar
  17. 17.
    Polajnar, T., Cunningham, H., Tablan, V., Bontcheva, K.: Controlled Language IE Components Version 1. EU–IST Integrated Project (IP) IST–2003–506826 SEKT, D2.2.1 Report, Sheffield (2006)Google Scholar
  18. 18.
    Delugach, H., Lampkin, B.: Acquiring Software Requirements As Conceptual Graphs. In: Proceedings of the Fifth International Symposium on Requirements Engineering, Los Alamitos (2001)Google Scholar
  19. 19.
    Alonso-Lavernia, M., De-la-Cruz-Rivera, A., Sidorov, G.: Generation of Natural Language Explanations of Rules in an Expert System. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 311–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Heidegger, M.: Protokoll zu einem Seminar über den Vortrag Zeit und Sein. Zur Sache des Denkens, Tübingen, 34 (1976)Google Scholar
  21. 21.
    Piaget, J.: The origins of intelligence in children, 2nd edn. International Universities Press, New York (1952)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlos Mario Zapata Jaramillo
    • 1
  • Alexander Gelbukh
    • 2
  • Fernando Arango Isaza
    • 1
  1. 1.Facultad de Minas, Escuela de SistemasUniversidad Nacional de ColombiaMedellínColombia
  2. 2.Computing Research Center (CIC)National Polytechnic Institute, Col. ZacatencoMexico

Personalised recommendations