Pre-conceptual Schema: A Conceptual-Graph-Like Knowledge Representation for Requirements Elicitation

  • Carlos Mario Zapata Jaramillo
  • Alexander Gelbukh
  • Fernando Arango Isaza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


A simple representation framework for ontological knowledge with dynamic and deontic characteristics is presented. It represents structural relationships (is-a, part/whole), dynamic relationships (actions such as register, pay, etc.), and conditional relationships (if-then-else). As a case study, we apply our representation language to the task of requirements elicitation in software engineering. We show how our pre-conceptual schemas can be obtained from controlled natural language discourse and how these diagrams can be then converted into standard UML diagrams. Thus our representation framework is shown to be a useful intermediate step for obtaining UML diagrams from natural language discourse.


Knowledge Representation Dynamic Relationship Semantic Network Requirement Elicitation Conceptual Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove (2000)Google Scholar
  2. 2.
    Brewster, C., O’Hara, K., Fuller, S., Wilks, Y., Franconi, E., Musen, M., Ellman, J., Shum, S.: Knowledge Representation with Ontologies: The Present and Future. IEEE Intelligent Systems 19(1), 72–81 (2004)CrossRefGoogle Scholar
  3. 3.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley Publishing Co., Reading (1984)zbMATHGoogle Scholar
  4. 4.
    Knowledge Interchange Format. Draft proposed American National Standard (dpANS) NCITS.T2/98-004.
  5. 5.
    Leite, J.: A survey on requirements analysis, Advanced Software Engineering Project. Technical Report RTP-071, Department of Information and Computer Science, University of California at Irvine (1987)Google Scholar
  6. 6.
    Cook, S.C., Kasser, J.E., Asenstorfer, J.: A Frame-Based Approach to Requirements Engineering. In: Proc. of 11th International Symposium of the INCOSE, Melbourne (2001)Google Scholar
  7. 7.
    Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., Rifaut, A.: A Knowledge Representation Language for Requirements Engineering. Proceedings of the IEEE 74(10), 1431–1444 (1986)CrossRefGoogle Scholar
  8. 8.
    Hagelstein, J.: Declarative Approach to Information Systems Requirements. Knowledge Based Systems 1(4), 211–220 (1988)CrossRefGoogle Scholar
  9. 9.
    Greenspan, S.: Requirements Modeling: A Knowledge Representation Approach to Software Requirements Definition. PhD thesis, Dept. of Computer Science, University of Toronto (1984)Google Scholar
  10. 10.
    Greenspan, S., Mylopoulos, J., Borgida, A.: On Formal Requirements Modelling Languages: RML Revisited. In: Proceedings of the Sixteenth Intl. Conf. on Software Engineering, Sorrento, pp. 135–148. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  11. 11.
    Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge about Information Systems. Transactions on Information Systems 8(4), 325–362 (1990)CrossRefGoogle Scholar
  12. 12.
    Jeusfeld, M.: Change Control in Deductive Object Bases. INFIX Pub, Bad Honnef (1992)Google Scholar
  13. 13.
    Tsai, J., Weigert, T., Jang, H.: A Hybrid Knowledge Representation as a Basis of Requirement Specification and Specification Analysis. IEEE Transactions on Software Engineering 18(12), 1076–1100 (1992)CrossRefGoogle Scholar
  14. 14.
    Ramos, J.J.: PML–A modeling language for physical knowledge representation. Ph.D. Thesis, Universitat Autònoma de Barcelona (2003)Google Scholar
  15. 15.
    Pulman, S.: Controlled Language for Knowledge Representation. In: Proceedings of the First International Workshop on Controlled Language Applications, Leuven, pp. 233–242 (1996)Google Scholar
  16. 16.
    Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). In: Proceedings of the First International Workshop on Controlled Language Applications, Leuven (1996) Google Scholar
  17. 17.
    Polajnar, T., Cunningham, H., Tablan, V., Bontcheva, K.: Controlled Language IE Components Version 1. EU–IST Integrated Project (IP) IST–2003–506826 SEKT, D2.2.1 Report, Sheffield (2006)Google Scholar
  18. 18.
    Delugach, H., Lampkin, B.: Acquiring Software Requirements As Conceptual Graphs. In: Proceedings of the Fifth International Symposium on Requirements Engineering, Los Alamitos (2001)Google Scholar
  19. 19.
    Alonso-Lavernia, M., De-la-Cruz-Rivera, A., Sidorov, G.: Generation of Natural Language Explanations of Rules in an Expert System. In: Gelbukh, A. (ed.) CICLing 2006. LNCS, vol. 3878, pp. 311–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Heidegger, M.: Protokoll zu einem Seminar über den Vortrag Zeit und Sein. Zur Sache des Denkens, Tübingen, 34 (1976)Google Scholar
  21. 21.
    Piaget, J.: The origins of intelligence in children, 2nd edn. International Universities Press, New York (1952)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlos Mario Zapata Jaramillo
    • 1
  • Alexander Gelbukh
    • 2
  • Fernando Arango Isaza
    • 1
  1. 1.Facultad de Minas, Escuela de SistemasUniversidad Nacional de ColombiaMedellínColombia
  2. 2.Computing Research Center (CIC)National Polytechnic Institute, Col. ZacatencoMexico

Personalised recommendations