Modelling Coordination in Biological Systems

  • Dave Clarke
  • David Costa
  • Farhad Arbab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4313)


We present an application of the Reo coordination paradigm to provide a compositional formal model for describing and reasoning about the behaviour of biological systems, such as regulatory gene networks. Reo governs the interaction and flow of data between components by allowing the construction of connector circuits which have a precise formal semantics. When applied to systems biology, the result is a graphical model, which is comprehensible, mathematically precise, and flexible.


Model Check Gene Regulatory Network Boolean Network Linear Temporal Logic Probabilistic Boolean Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fontana, W., Buss, L.W.: The barrier of objects: From dynamical systems to bounded organizations. In: Casti, J., Karlqvist, A. (eds.) Boundaries and Barriers, pp. 56–116. Addison-Wesley, Reading (1996)Google Scholar
  2. 2.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Pacific Symposium on Biocomputing, vol. 6, pp. 459–470 (2001)Google Scholar
  3. 3.
    Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science (2003)Google Scholar
  4. 4.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Danos, V., Pradalier, S.: Projective Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Chang, B.Y.E., Sridharan, M.: PML: Towards a high-level formal language for biological systems. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science (2003)Google Scholar
  7. 7.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An abstraction for biological compartments. Theoretical Computer Science, Special Issue on Computational Methods in Systems Biology 325, 141–167 (2004)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kuttler, C., Niehren, J., Blossey, R.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. In: Workshop on Concurrent Models in Molecular Biology. BIO-CONCUR workshop proceedings. ENTCS. Elsevier, Amsterdam (2004)Google Scholar
  9. 9.
    Savageau, M.A.: Rules for the evolution of gene circuitry. In: Pacific Symposium of Biocomputing, pp. 54–65 (1998)Google Scholar
  10. 10.
    Kitano, H.: A graphical notation for biochemical networks. BIOSILICO 1, 169–176 (2003)CrossRefGoogle Scholar
  11. 11.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Proc. Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)Google Scholar
  12. 12.
    McAdams, H., Shapiro, L.: Circuit simulation of genetic networks. Science 269, 650–656 (1995)CrossRefGoogle Scholar
  13. 13.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325, 25–44 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Computing Surveys 26, 87–119 (1994)CrossRefGoogle Scholar
  15. 15.
    Arbab, F.: Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Arbab, F.: Abstract behavior types: A foundation model for components and their composition. In: [31], pp. 33–70 (2003)Google Scholar
  17. 17.
    Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connectors in Reo by constraint automata. In: International Workshop on Foundations of Coordination Languages and Software Architectures (FOCSLA), Marseille, France. ENTCS, Elsevier, Amsterdam (2003)Google Scholar
  18. 18.
    Wolkenhauer, O., Ghosh, B., Cho, K.H.: Control & coordination in biochemical networks (editorial notes). IEEE CSM Special Issue on Systems Biology (2004)Google Scholar
  19. 19.
    Stryer, L.: Biochemistry. Freeman, New York (1988)Google Scholar
  20. 20.
    Department of Energy, U. (2004),
  21. 21.
    Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001)CrossRefGoogle Scholar
  22. 22.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Modeling and temporal logics for timed component connectors. In: IEEE International Conference on Software Engineering and Formal Methods (SEFM 2004), Beijing, China (submitted, 2004)Google Scholar
  23. 23.
    Glass, K., Kauffman, S.A.: The logical analysis of continuous, nonlinear biochemical control networks. J. Theoretical Biology 44, 103–129 (1974)Google Scholar
  24. 24.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  25. 25.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  26. 26.
    Cardelli, L.: Brane calculi: Interaction of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Regev, A.: Representation and simulation of molecular pathways in the stochastic pi-calculus. In: 2nd Workshop on Computation of Biochemical Pathways and Genetic Networks (2001)Google Scholar
  28. 28.
    Schmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 90 (2002)Google Scholar
  29. 29.
    Cho, K.H., Wolkenhauer, K.H.J.O.: A hybrid systems framework for cellular processes. BioSystems (2005)Google Scholar
  30. 30.
    Guillen-Scholten, J.V.: A first translation from Reo to Petri nets and vice-versa, Talk at ACG meeting, CWI (2004)Google Scholar
  31. 31.
    de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.): FMCO 2002. LNCS, vol. 2852. Springer, Heidelberg (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dave Clarke
    • 1
  • David Costa
    • 1
  • Farhad Arbab
    • 1
  1. 1.CWIAmsterdamThe Netherlands

Personalised recommendations