Distributed Routing in Tree Networks with Few Landmarks

  • Ioannis Z. Emiris
  • Euripides Markou
  • Aris Pagourtzis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4235)

Abstract

We consider the problem of finding a short path between any two nodes of a network when no global information is available, nor any oracle to help in routing. A mobile agent, situated in a starting node, has to walk to a target node traversing a path of minimum length. All information about adjacencies is distributed to certain nodes called landmarks. We wish to minimize the total memory requirements as well as keep the memory requirements per landmark to reasonable levels. We propose a landmark selection and information distribution scheme with overall memory requirement linear in the number of nodes, and constant memory consumption per non-landmark node. We prove that a navigation algorithm using this scheme attains a constant stretch factor overhead in tree topologies, compared to an optimal landmark-based routing algorithm that obeys certain restrictions. The flexibility of our approach allows for various trade-offs, such as between the number of landmarks and the size of the region assigned to each landmark.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Gavoille, C., Malkhi, D.: On space-stretch trade-offs for compact routing schemes. Research Report RR-1374-05, LaBRI, France (November 2005)Google Scholar
  2. 2.
    Abraham, I., Gavoille, C., Malkhi, D.: Compact routing for graphs excluding a fixed minor. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 442–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Malkhi, D.: Name Independent Routing for Growth Bounded Networks. In: Proc.17th ACM Symp. Parall. Algorithms and Architectures (SPAA 2005), pp. 49–55 (2005)Google Scholar
  4. 4.
    Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Compact distributed data structures for adaptive network routing. In: Proc. of 21st ACM Symp. on Theory of Computing, pp. 230–240 (May 1989)Google Scholar
  5. 5.
    Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms 15, 385–415 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Buhrman, H., Hoepman, J.-H., Vitanyi, P.: Optimal routing tables. In: Proc. 15th ACM Symp. on Principles of Distributed Computing, pp. 134–142 (May 1996)Google Scholar
  7. 7.
    Fang, Q., Gao, J., Guibas, L., de Silva, V., Zhang, L.: GLIDER: Gradient Landmark- Based Distributed Routing for Sensor Networks. In: Proc. 24th Conf. of IEEE Com. Soc. (INFOCOM 2005) (2005)Google Scholar
  8. 8.
    Fraigniaud, P., Gavoille, C.: Memory requirement for universal routing schemes. In: Proc. 14th ACM Symp. on Principles of Distributed Computing, pp. 223–230 (August 1995)Google Scholar
  9. 9.
    Fraigniaud, P., Gavoille, C.: Local memory requirement of universal routing schemes. In: Proc. 8th ACM Symp. on Parallel Algorithms and Architectures, pp. 183–188 (June 1996)Google Scholar
  10. 10.
    Frederickson, G.N., Janardan, R.: Separator-Based Strategies for Efficient Message Routing. In: Proc. 27th IEEE Symp. on Foundations of Computer Science, pp. 428–437 (1986)Google Scholar
  11. 11.
    Frederickson, G.N., Janardan, R.: Designing networks with compact routing tables. Algorithmica 3, 171–190 (1988)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Frederickson, G.N., Janardan, R.: Efficient message routing in planar networks. SIAM Journal on Computing 18, 843–857 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Gavoille, C., Gengler, M.: Space-efficiency of routing schemes of stretch factor three. In: Proc. 4th Int. Colloq. on Structural Information & Communication Complexity, pp. 162–175. Carleton Scientific (1997)Google Scholar
  15. 15.
    Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distributed Computing 16(2-3), 111–120 (2003)CrossRefGoogle Scholar
  16. 16.
    Gavoille, C., Perennes, S.: Memory requirement for routing in distributed networks. In: Proc. 15th ACM Symp. on Principles of Distributed Computing, pp. 125–133 (May 1996)Google Scholar
  17. 17.
    Hochbaum, D., Shmoys, D.B.: A best possible heuristic for the k −center problem. Mathematics of Operations Research 10, 180–184 (1985)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in Graphs. Discrete Applied Mathematics 70(3), 217–229 (1996)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discrete Math. 13, 403–418 (2000)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kleinrock, L., Kamoun, F.: Hierarchical routing for large networks: performance evaluation and optimization. Computer Networks 1, 155–174 (1977)MathSciNetGoogle Scholar
  21. 21.
    Kleinrock, L., Kamoun, F.: Optimal clustering structures for hierarchical topological design of large computer networks. Computer Networks 10, 221–248 (1980)MATHMathSciNetGoogle Scholar
  22. 22.
    Kranakis, E., Krizanc, D.: Lower bounds for compact routing. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 529–540. Springer, Heidelberg (1996)Google Scholar
  23. 23.
    Peleg, D.: Distance-dependent distributed directories. Information and Computation, pp. 270–298 (1993)Google Scholar
  24. 24.
    Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables. J. ACM 36, 510–530 (1989)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Perlman, R.: Hierarchical networks and the subnetwork partition problem. In: Proc. 5th Conf. on System Sciences (1982)Google Scholar
  26. 26.
    Santoro, N., Khatib, R.: Labelling and implicit routing in networks. The Computer Journal 28, 5–8 (1985)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th annual ACM symposium on Parallel algorithms and architectures, pp. 1–10, Crete Island, Greece (2001)Google Scholar
  28. 28.
    Tsuchiya, P.F.: The landmark hierarchy: A new hierarchy for routing in very large networks. Computer Communication Review 18(4), 35–42 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ioannis Z. Emiris
    • 1
  • Euripides Markou
    • 1
  • Aris Pagourtzis
    • 2
  1. 1.Dept. Informatics & TelecomsNational University of AthensGreece
  2. 2.School of Elec. and Comp. Eng.National Technical University of AthensGreece

Personalised recommendations