Advertisement

Hierarchical Motion-Compensated Frame Interpolation Based on the Pyramid Structure

  • Gun-Ill Lee
  • Rae-Hong Park
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4261)

Abstract

This paper presents a hierarchical motion-compensated frame interpolation (HMCFI) algorithm based on the pyramid structure for high-quality video reconstruction. Conversion between images having different frame rates produces motion jitter and blurring near moving object boundaries. To reduce degradation in video quality, the proposed algorithm performs motion estimation (ME) and motion-compensated frame interpolation (MCFI) at each level of the Gaussian/Laplacian image pyramids. In experiments, the frame rate of the progressive video sequence is up-converted by a factor of two and the performance of the proposed HMCFI algorithm is compared with that of conventional frame interpolation methods.

Keywords

Gaussian/Laplacian image pyramids hierarchical motion-compensated frame interpolation motion estimation pyramid structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stiller, C., Konrad, J.: Estimating Motion in Image Sequences. IEEE Signal Processing Magazine 16(4), 70–91 (1999)CrossRefGoogle Scholar
  2. 2.
    Dufaux, F., Moscheni, F.: Motion Estimation Techniques for Digital TV: A Review and a New Contribution. Proc. IEEE 83, 858–876 (1995)CrossRefGoogle Scholar
  3. 3.
    Reed, E.C., Dufaux, F.: Constrained Bit-Rate Control for Very Low Bit-Rate Streaming-Video Applications. IEEE Trans. Circuits Syst. Video Technol. 11(7), 882–889 (2001)CrossRefGoogle Scholar
  4. 4.
    Cote, G., Erol, B., Gallant, M., Kossentini, F.: H.263+: Video Coding at Low Bit Rates. IEEE Trans. Circuits Syst. Video Technol. 8(7), 849–866 (1998)CrossRefGoogle Scholar
  5. 5.
    Lee, S.-H., Shin, Y.-C., Yang, S.-J., Moon, H.-H., Park, R.-H.: Adaptive Motion-Compensated Interpolation for Frame Rate Up-Conversion. IEEE Trans. Consumer Electronics 48(3), 444–450 (2002)CrossRefGoogle Scholar
  6. 6.
    Choi, B.-T., Lee, S.-H., Ko, S.-J.: New Frame Rate Up-Conversion Using Bi-Directional Motion Estimation. IEEE Trans. Consumer Electronics 46(3), 603–609 (2000)CrossRefGoogle Scholar
  7. 7.
    Hilman, K., Park, H.-W., Kim, Y.-M.: Using Motion Compensated Frame-Rate Conversion for the Correction of 3:2 Pulldown Artifacts in Video Sequences. IEEE Trans. Circuits Syst. Video Technol. 10(6), 869–877 (2000)CrossRefGoogle Scholar
  8. 8.
    Bierling, M.: Displacement Estimation by Hierarchical Block Matching. In: Proc. SPIE Visual Communications and Image Processing, Cambridge, MA, vol. 1001(2), pp. 942–951 (1988)Google Scholar
  9. 9.
    Thoma, R., Bierling, M.: Motion Compensating Interpolation Considering Covered and Uncovered Background. Signal Processing: Image Communications 1(2), 191–212 (1989)CrossRefGoogle Scholar
  10. 10.
    ISO/IEC JTC1/SC29/WG11 MPEG93/N457, MPEG-2 Test Model Version 5 (March 1993)Google Scholar
  11. 11.
    Burt, P.J., Adelson, E.H.: The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Communications 31(4), 532–540 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gun-Ill Lee
    • 1
  • Rae-Hong Park
    • 1
  1. 1.Department of Electronic EngineegingSogang UniversitySeoulKorea

Personalised recommendations