Applying the ATAM to an Architecture for Decentralized Control of a Transportation System

  • Nelis Boucké
  • Danny Weyns
  • Kurt Schelfthout
  • Tom Holvoet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4214)

Abstract

For two years, we have been involved in a challenging project to develop a new architecture for an industrial transportation system. The motivating quality attributes to develop this innovative architecture were flexibility and openness. Taking these quality attributes into account, we proposed a decentralized architecture using multiagent systems (MASs). A MAS consists of multiple autonomous entities that coordinate with each other to achieve decentralized control. The typical advantages attributed to such decentralized architecture are flexibility and openness, the motivating quality attributes to apply MAS in this case.

The Architecture Tradeoff Analysis Method (ATAM) was used to provide insights wether our architecture meets the expected flexibility and openness, and to identify tradeoffs with other quality attributes. Applying the ATAM proved to be a valuable experience. One of the main outcome of applying the ATAM was the identification of a tradeoff between flexibility and communication load that results from the use of a decentralized architecture.

This paper describes our experiences in applying the ATAM to a MAS architecture, containing both the main outcomes of the evaluation and a critical reflection on the ATAM itself.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Distrinet: Distrinet research group website, http://www.cs.kuleuven.ac.be/cwis/research/distrinet/
  2. 2.
    Egemin: DistriNet: Emc2: Egemin modular controls concept (IWT-funded project with Distrinet and Egemin), http://emc2.egemin.com
  3. 3.
    Egemin: Egemin website, http://www.egemin.com
  4. 4.
    Weyns, D., Schelfthout, K., Holvoet, T., Lefever, T.: Decentralized control of E’GV transportation systems. In: International Conference on Autonomous Agents and Multi-Agent Systems, Industry Track, pp. 25–29 (2005)Google Scholar
  5. 5.
    Weyns, D., Holvoet, T.: A Reference Architecture for Situated Multiagent Systems. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 1–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case Studies. Addison Wesley Publishing Comp., Reading (2002)Google Scholar
  7. 7.
    Kazman, R., Klein, M., Clements, P.: Atam: Method for architecture evaluation. Technical Report CMU/SEI-2000-TR-004, SEI, Carnegie Mellon University (2000)Google Scholar
  8. 8.
    WordNet 2.1., Princeton University Cognitive Science Library, http://wordnet.princeton.edu/
  9. 9.
    Schelfthout, K., Weyns, D., Holvoet, T.: Middleware for protocol-based coordination in dynamic networks. In: MPAC 2005: Proceedings of the 3rd international workshop on Middleware for pervasive and ad-hoc computing, pp. 1–8. ACM Press, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Wooldridge, M.: An introduction to Multiagent Systems. John Wiley & Sons, Ltd., Chichester (2002)Google Scholar
  11. 11.
    Ferber, J.: Multi-agent Systems. In: An Introduction to Distributed AI. Addison-Wesley, Reading (1999)Google Scholar
  12. 12.
    Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent systems state-of-the-art and research challenges. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS, vol. 3374, pp. 1–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Boucké, N., Holvoet, T., Lefever, T., Sempels, R., Schelfthout, K., Weyns, D., Wielemans, J.: Applying the Architecture Tradeoff Analysis Method (ATAM) to an industrial multi-agent system application. Technical Report CW431, Departement of Computer Sience, KULeuven (2005)Google Scholar
  14. 14.
    Schelfthout, K., Holvoet, T.: Coordination middleware for decentralized applications in dynamic networks. In: DSM 2005: Proceedings of the 2nd international doctoral symposium on Middleware, pp. 1–5. ACM Press, New York (2005)CrossRefGoogle Scholar
  15. 15.
    Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. Distributed Artificial Intelligence, 357–366 (1988)Google Scholar
  16. 16.
    Boucké, N., Weyns, D., Holvoet, T., Mertens, K.: Decentralized allocation of tasks with delayed commencement. In: Chiara, G., Ciorgini, P., van der Hoek, W. (eds.) EUMAS 2004 Proceedings, pp. 57–68 (2004)Google Scholar
  17. 17.
    Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.: Documenting Software Architectures, Views and Beyond. Addison Wesley, Reading (2003)Google Scholar
  18. 18.
    Weyns, D., Boucké, N., Holvoet, T.: Gradient field based task assignment in an agv transportation system. In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2006)Google Scholar
  19. 19.
    Rosenblatt, J.K., Payton, D.W.: A fine-grained alternative to the subsumption architecture for mobile robot control. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 2, pp. 317–324 (1989)Google Scholar
  20. 20.
    Tyrrell, T.: Computational Mechanisms for Action Selection. PhD thesis, University of Edinburgh. Centre for Cognitive Science (1993)Google Scholar
  21. 21.
    Weyns, D., Steegmans, E., Holvoet, T.: Protocol based communication for situated multi-agent systems. In: Proceeding of the Third International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2004, pp. 118–126. ACM Press, New York (2004)Google Scholar
  22. 22.
    Lassing, N., Bengtsson, P., van Vliet, H., Bosch, J.: Experiences with ALMA: Architecture-level modifiability analysis. Journal of Systems and Software 61(1), 47–57 (2002)CrossRefGoogle Scholar
  23. 23.
    Olumofin, F.G., Misic, V.B.: Extending the ATAM architecture evaluation to product line architectures. In: IEEE/IFIP Working Conference on Software Architecture, WICSA (2005)Google Scholar
  24. 24.
    Brooks, R.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)CrossRefGoogle Scholar
  25. 25.
    Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the gaia methodology. ACM Transactions on Software Engineering and Methodology 12(3) (2003)Google Scholar
  26. 26.
    Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of Agent-Based Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: Prosa. Computers in Industry 37 (1998)Google Scholar
  28. 28.
    Garcia, A., Kulesza, U., Lucena, C.J.P.: Aspectizing Multi-agent Systems: From Architecture to Implementation. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS 2004. LNCS, vol. 3390, pp. 121–143. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Shehory, O.: Architectural properties of multiagent systems. Technical Report CMU-RI-TR-98-28, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1998)Google Scholar
  30. 30.
    Berman, S., Edan, Y., Jamshidi, M.: Decentralized autonomous agvs in material handling. Transactions on Robotics and Automation 19(4) (2003)Google Scholar
  31. 31.
    Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Decentralized cooperative con ict resolution for multiple nonholonomic vehicles. In: AIAA Conference on Guidance, Navigation and Control (2005)Google Scholar
  32. 32.
    Ong, L.: An investigation of an agent-based scheduling in decentralised manufacturing control. PhD thesis, University of Cambridge (2003)Google Scholar
  33. 33.
    Woods, S.G., Barbacci, M.: Architectural evaluation of collaborative agent-based systems. Technical Report CMU/SEI-99-TR-025, CMU/SEI (1999)Google Scholar
  34. 34.
    Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE Transactions on Software Engineering 28(7) (2002)Google Scholar
  35. 35.
    Babar, M.A., Zhu, L., Jeffery, R.: A framework for classifying and comparing software architecture evaluation methods. In: Proceedings Australian Software Engineering Conference (ASWEC) (2004)Google Scholar
  36. 36.
    Bass, L., Clements, P., Kazman, R.: Software Architectures in Practice, 2nd edn. Addison-Wesley, Reading (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nelis Boucké
    • 1
  • Danny Weyns
    • 1
  • Kurt Schelfthout
    • 1
  • Tom Holvoet
    • 1
  1. 1.Distrinet, KULeuvenLeuvenBelgium

Personalised recommendations