Bisimulation Congruences in the Calculus of Looping Sequences

  • Roberto Barbuti
  • Andrea Maggiolo-Schettini
  • Paolo Milazzo
  • Angelo Troina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4281)

Abstract

The Calculus of Looping Sequences (CLS) is a calculus suitable to describe biological systems and their evolution. CLS terms are constructed by starting from basic constituents and composing them by means of operators of concatenation, looping, containment and parallel composition. CLS terms can be transformed by applying rewrite rules. We give a labeled transition semantics for CLS by using, as labels, contexts in which rules can be applied. We define bisimulation relations that are congruences with respect to the operators on terms, and we show an application of CLS to the modeling of a biological system and we use bisimulations to reason about properties of the described system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Probabilistic Model for Molecular Systems. Fundamenta Informaticae 67, 13–27 (2005)MathSciNetMATHGoogle Scholar
  3. 3.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72, 1–15 (2006)MathSciNetGoogle Scholar
  4. 4.
    Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and Querying Biomolecular Interaction Networks. Theoretical Computer Science 325(1), 25–44 (2004)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling Biochemical Pathways through Enhanced pi-calculus. Theoretical Computer Science 325(1), 111–140 (2004)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Danos, V., Laneve, C.: Formal Molecular Biology. Theoretical Computer Science 325(1), 69–110 (2004)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Leifer, J.J., Milner, R.: Deriving Bisimulation Congruences for Reactive Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Representation of Gene Regulatory Network. In: Pacific Symposium on Biocomputing, pp. 341–352. World Scientific Press, Singapore (2000)Google Scholar
  10. 10.
    Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and Simulation of Biochemical Processes Using the pi-calculus Process Algebra. In: Pacific Symposium on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar
  13. 13.
    Sewell, P.: From Rewrite Rules to Bisimulation Congruences. Theoretical Computer Science 274, 183–230 (2002)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Andrea Maggiolo-Schettini
    • 1
  • Paolo Milazzo
    • 1
  • Angelo Troina
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations