Model Checking Duration Calculus: A Practical Approach

  • Roland Meyer
  • Johannes Faber
  • Andrey Rybalchenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4281)


Model checking of real-time systems with respect to Duration Calculus (DC) specifications requires the translation of DC formulae into automata-based semantics. This task is difficult to automate. The existing algorithms provide a limited DC coverage and do not support compositional verification. We propose a translation algorithm that advances the applicability of model checking tools to real world applications. Our algorithm significantly extends the subset of DC that can be handled. It decomposes DC specifications into sub-properties that can be verified independently. The decomposition bases on a novel distributive law for DC. We implemented the algorithm as part of our tool chain for the automated verification of systems comprising data, communication, and real-time aspects. Our translation facilitated a successful application of the tool chain on an industrial case study from the European Train Control System (ETCS).


Model Check Operational Semantic Trace Formula Parallel Composition Disjunctive Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABBL03]
    Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. Theoretical Computer Science 300(1-3), 411–475 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  2. [AD94]
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  3. [BLR95]
    Bouajjani, A., Lakhnech, Y., Robbana, R.: From duration calculus to linear hybrid automata. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 196–210. Springer, Heidelberg (1995)Google Scholar
  4. [CGJ+00]
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. [DL02]
    Dierks, H., Lettrari, M.: Constructing test automata from graphical real-time requirements. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 433–453. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. [ERT02]
    ERTMS User Group, UNISIG. ERTMS/ETCS System requirements specification. Version 2.2.2 (2002),
  7. [Frä04]
    Fränzle, M.: Model-checking dense-time duration calculus. Formal Aspects of Computing 16(2), 121–139 (2004)CrossRefzbMATHGoogle Scholar
  8. [GS97]
    Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  9. [Han06]
    Hansen, M.: DC with nominals. Personal communication (March 2006)Google Scholar
  10. [HJMM04]
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL, pp. 232–244. ACM Press, New York (2004)CrossRefGoogle Scholar
  11. [HJU05]
    Hermanns, H., Jansen, D.N., Usenko, Y.S.: From StoCharts to MoDeST: a comparative reliability analysis of train radio communications. In: WOSP, pp. 13–23. ACM Press, New York (2005)Google Scholar
  12. [HM05]
    Hoenicke, J., Maier, P.: Model-checking of specifications integrating processes, data and time. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 465–480. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. [HMF06]
    Hoenicke, J., Meyer, R., Faber, J.: PEA toolkit home page (2006),
  14. [HO02]
    Hoenicke, J., Olderog, E.-R.: CSP-OZ-DC: A combination of specification techniques for processes, data and time. NJC 9 (2002)Google Scholar
  15. [Hoa85]
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  16. [Hoe06]
    Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, University of Oldenburg, Germany (to appear, 2006)Google Scholar
  17. [KP05]
    Krishna, S.N., Pandya, P.K.: Modal strength reduction in quantified discrete duration calculus. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 444–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. [McM03]
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. [Pan02]
    Pandya, P.K.: Interval duration logic: Expressiveness and decidability. ENTCS 65(6) (2002)Google Scholar
  20. [Rav94]
    Ravn, A.P.: Design of Embedded Real-Time Computing Systems. PhD thesis, Technical University of Denmark (1994)Google Scholar
  21. [Ryb06]
    Rybalchenko, A.: ARMC (2006),
  22. [Smi00]
    Smith, G.: The Object-Z Specification Language. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  23. [UUP05]
    Uppaal home page. University of Aalborg and University of Uppsala (1995-2005),
  24. [VW86]
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 332–344 (1986)Google Scholar
  25. [ZH04]
    Zhou, C., Hansen, M.R.: Duration Calculus. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  26. [ZH05]
    Zimmermann, A., Hommel, G.: Towards modeling and evaluation of ETCS real-time communication and operation. JSS 77(1), 47–54 (2005)Google Scholar
  27. [ZHS93]
    Zhou, C., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for duration calculus. In: STACS 1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roland Meyer
    • 1
  • Johannes Faber
    • 1
  • Andrey Rybalchenko
    • 2
    • 3
  1. 1.Carl-von-Ossietzky-Universität Oldenburg 
  2. 2.Ecole Polytechnique Fédérale de Lausanne 
  3. 3.Max-Planck-Institut Informatik Saarbrücken 

Personalised recommendations