Advertisement

Proving ATL* Properties of Infinite-State Systems

  • Matteo Slanina
  • Henny B. Sipma
  • Zohar Manna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4281)

Abstract

Alternating temporal logic (atl*) was introduced to prove properties of multi-agent systems in which the agents have different objectives and may collaborate to achieve them. Examples include (distributed) controlled systems, security protocols, and contract-signing protocols. Proving atl* properties over finite-state systems was shown decidable by Alur et al., and a model checker for the sublanguage atl implemented in mocha.

In this paper we present a sound and complete proof system for proving alt* properties over infinite-state systems. The proof system reduces proofs of alt* properties over systems to first-order verification conditions in the underlying assertion language. The verification conditions make use of predicate transformers that depend on the system structure, so that proofs over systems with a simpler structure, e.g., turn-based systems, directly result in simpler verification conditions. We illustrate the use of the proof system on a small example.

Keywords

Ranking Function Proof System Proof Rule Fairness Condition Predicate Transformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T., Mang, F., Qadeer, S., Rajamani, S., Tasiran, S.: MOCHA: Modularity in model checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair exchange protocols. Journal of Computer Security 11(3), 399–429 (2003)Google Scholar
  4. 4.
    Kremer, S., Raskin, J.F.: Game analysis of abuse-free contract signing. In: Computer Security Foundations Workshop (CSFW). IEEE Computer Society, Los Alamitos (2002)Google Scholar
  5. 5.
    Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multi-party contract signing. Journal of Automated Reasoning (to appear, 2006)Google Scholar
  6. 6.
    Pauly, M., Wooldridge, M.: Logic for mechanism design—A manifesto. In: Proceedings of the 2003 Workshop on Game Theory and Decision Theory in Agent-Based Systems (GTDT 2003), Melbourne, Australia (2003)Google Scholar
  7. 7.
    Lamport, L.: Specifying Systems. Addison-Wesley, Reading (2002)Google Scholar
  8. 8.
    Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of alternating-time temporal logic. Theoretical Computer Science 353(1–3), 93–117 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Manna, Z., Pnueli, A.: Completing the temporal picture. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 534–558. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  10. 10.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theoretical Computer Science 331 (2005) 397–428zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vardi, M.Y.: Verification of concurrent programs: The automata-theoretic framework. Journal of Pure and Applied Logic 51(1–2), 79–98 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fix, L., Grumberg, O.: Verification of temporal properties. J. Logic Computat. 6(3), 343–361 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Slanina, M., Sipma, H.B., Manna, Z.: Proving ATL* properties of infinite-state systems. Technical Report REACT-TR-2006-02, Stanford University, Computer Science Department, REACT Group (2006), avaliable at: http://react.stanford.edu/TR/
  15. 15.
    Slanina, M.: Control rules for reactive system games. In: Fischer, B., Smith, D.R. (eds.) Logic-Based Program Synthesis: State of the Art and Future Trends. AAAI Spring Symposium. The American Association for Artificial Intelligenc, pp. 95–104. AAAI Press, Menlo Park (2002); available from AAAI as Technical Report SS-02-05 Google Scholar
  16. 16.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Henzinger, T.A., Majumdar, R., Mang, F.Y.C., Raskin, J.-F.: Abstract interpretation of game properties. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 220–240. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Manna, Z., Pnueli, A.: Temporal verification diagrams. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 726–765. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matteo Slanina
    • 1
  • Henny B. Sipma
    • 1
  • Zohar Manna
    • 1
  1. 1.Stanford University 

Personalised recommendations