Layout of Multiple Views for Volume Visualization: A User Study

  • Daniel Lewis
  • Steve Haroz
  • Kwan-Liu Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4292)


Volume visualizations can have drastically different appearances when viewed using a variety of transfer functions. A problem then occurs in trying to organize many different views on one screen. We conducted a user study of four layout techniques for these multiple views. We timed participants as they separated different aspects of volume data for both time-invariant and time-variant data using one of four different layout schemes. The layout technique had no impact on performance when used with time-invariant data. With time-variant data, however, the multiple view layouts all resulted in better times than did a single view interface. Surprisingly, different layout techniques for multiple views resulted in no noticeable difference in user performance. In this paper, we describe our study and present the results, which could be used in the design of future volume visualization software to improve the productivity of the scientists who use it.


User Study Multiple View User Performance Task Completion Time Single View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abram, G., Treinish, L.: An extended data-flow architecture for data analysis and visualization. In: Proceedings of the IEEE Visualization 1995 conference, October 1995, pp. 263–270 (1995)Google Scholar
  2. 2.
    Bly, S.A., Rosenberg, J.K.: A comparison of tiled and overlapping windows. In: Mantei, M., Orbeton, P. (eds.) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI 1986. ACM Press, New York (1986)Google Scholar
  3. 3.
    Calhoun, P.S., Kuszyk, B.S., et al.: Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19(3), 745–764 (1999)Google Scholar
  4. 4.
    Cooper, A., Reimann, R.: About Face 2.0: The Essentials of Interaction Design. Wiley, New York (2003)Google Scholar
  5. 5.
    Girgensohn, A., Boreczky, J., Chiu, P., Doherty, J., Foote, J., Golovchinsky, G., Uchihashi, S., Wilcox, L.: A semi-automatic approach to home video editing. In: UIST 2000: Proceedings of the 13th Annual ACM Symposium on User interface Software and Technology, pp. 81–89. ACM Press, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Gresh, D.L., Rogowitz, B.E., Winslow, R.L., Scollan, D.F., Yung, C.K.: WEAVE: a system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data. In: Proceedings of the Conference on Visualization. IEEE Visualization, pp. 489–492. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  7. 7.
    He, T., Hong, L., Kaufman, A., Pfister, H.: Generation of transfer functions, with stochastic search techniques. In: Proceedings Of IEEE Visualization 1996 Conference, October 1996, pp. 227–234 (1996)Google Scholar
  8. 8.
    Henderson, D.A., Card, S.: Rooms: the use of multiple virtual workspaces to reduce space contention in a window-based graphical user interface. ACM Trans. Graph. 5(3), 211–243 (1986)CrossRefGoogle Scholar
  9. 9.
    Jankun-Kelly, T.J., Ma, K.-L.: A spreadsheet interface for volume visualization. In: Proceedings of IEEE Visualization 2000 Conference (2000)Google Scholar
  10. 10.
    Ma, K.-L.: Image graph: A novel approach to visual data exploration. In: Proceedings of IEEE Visualizaton 1999 Conference, pp. 81–88 (1999)Google Scholar
  11. 11.
    Marks, J., Andalman, B., Beardsley, P., Freeman, W., Gibson, S., Hodings, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design Galleries: A general approach to setting parameters for computer graphics and animation. In: Proceedings of SIGGRAPH 1997 Conference, August 1997, pp. 389–400 (1997)Google Scholar
  12. 12.
    O’Regan, J.K., Rensink, R.A., Clark, J.J.: Change-blindness as a result of ’mudsplashes’. Nature 398(6722), 34–34 (1999)CrossRefGoogle Scholar
  13. 13.
    Roberts, J.C.: On Encouraging Multiple Views for Visualisation. In: Proceedings of the international Conference on information Visualisation, vol. 8. IEEE Computer Society, Washington (1998)Google Scholar
  14. 14.
    Sears, A.: Layout appropriateness: a metric for evaluating user interface widget layout. IEEE Transactions on Software Engineering 19(7), 707–719 (1993)CrossRefGoogle Scholar
  15. 15.
    Tory, M., Potts, S., Möller, T.: A Parallel Coordinates Style Interface for Exploratory Volume Visualization. IEEE Transactions on Visualization and Computer Graphics 11(1), 71–80 (2005)CrossRefGoogle Scholar
  16. 16.
    Tzeng, F.-Y., Ma, K.-L., Lum, E.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics 11(3), 273–284 (2005)CrossRefGoogle Scholar
  17. 17.
    Ueda, H., Miyatake, T., Sumino, S., Nagasaka, A.: Automatic structure visualization for video editing. In: CHI 1993: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 137–141. ACM Press, New York (1993)CrossRefGoogle Scholar
  18. 18.
    Upson, C., Faulhaber, T., Kamins, D., Schlegel, D., Laidlaw, D., Vroom, J., Gurwitz, R., Van Dam, A.: The application visualization system: A computational environment for scientific visualization. IEEE Computer Graphics and Applications 9(4), 30–42 (1989)CrossRefGoogle Scholar
  19. 19.
    Young, M., Argiro, D., Kubica, S.: Cantata: Visual programming environment for the Khoros system. ACM SIGGRAPH Computer Graphics 29(2), 22–24 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniel Lewis
    • 1
  • Steve Haroz
    • 1
  • Kwan-Liu Ma
    • 1
  1. 1.University of California at Davis 

Personalised recommendations